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I. Introduction  

Management information systems in the academic world with information technology have 
increased rapidly due to their efficiency and effectiveness [1]. With the rapid development of 
information technology in this era, data accuracy is essential in our daily lives to solve existing 
problems. The existence of information is beneficial in helping the decision-making process [2]. 
Therefore, any existing data can be further processed and analyzed to be used as new knowledge so 
that it is useful to determine the right decision [3]. According to the standards determined by the 
following article 1 paragraph 17 Law of Indonesia Number 20 the Year 2003, the university's strategy 
to obtain qualified students states: "National education standards are the minimum criteria regarding 
the education system in the entire jurisdiction of the Unitary Republic of Indonesia". This strategy 
starts by examining the availability of information so that the university can control the quality of 
students who are accepted [4]. One of the private Islamic tertiary institutions in Surakarta, Universitas 
Muhammadiyah Surakarta, opens new student registration channels through the One Day Service 
(ODS). The service has been integrated with information systems to record any input data into the 
information system automatically. Although the service integrates with the information system, it does 
not utilize the incoming data to obtain useful knowledge. A system's reliability is measured from the 
level of information available when it is wanted, and all components operate that make up the system 
[5]. Available data from admission can be transformed into a prediction student's score data so that it 
can help to evaluate the admission process. The prediction result will give a new insight to control the 
number of accepted new students according to the specified quality. One method that utilizes data 
obtained to predict future data is to use the time series method [6]. The time series forecasting method 
is a method that collects the same variables to be analyzed and developed into a model of describing 
the relationships that underline it. There are many models for time series, including ARMA (Auto 
Regressive Moving Average) [7], ARIMA (Auto-Regressive Integrated Moving Average) [8], 
SARIMA (Seasonal Auto-Regressive Integrated Moving Average) [9], SARIMAX (Seasonal Auto-
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Regressive Integrated Moving Average Exogenous) [10] and ARIMAX (Auto Regressive Moving 
Average Exogenous) [11].  

 This study compared three models: The triple Exponential Smoothing model, ARMA model, 
and Auto Regression model to decide which model is the best to fit the data given in the One Day 
Service (ODS) dataset. These models are preferred because it is suitable for predicting data that is 
already stationary. The purpose of this research is to determine whether an application using the time 
series algorithm such as Auto Regression, ARMA (Auto Regressive Moving Average), and Triple 
Exponential Smoothing model. They can forecast prediction scores that may help to solve the student's 
admission problem. In this case of the project, the researcher found that the Universitas 
Muhammadiyah Surakarta's admission system is not evaluated correctly in accepting students and 
controlling incoming students' quality due to the lack of insights. The model with the best prediction 
performance will be applied to forecast the student's score in the One Day Service (ODS) test at the 
Universitas Muhammadiyah Surakarta to control the admission test's difficulty. This application's 
development uses a web framework called Django, a full-stack Python web framework that 
encourages rapid growth and clean, pragmatic design [12]. The remainder of the paper is organized 
as follows. A proposed model time series is used in Section II to forecast the One Day Service (ODS) 
student's score. Section III presents the general methodology to build the time series model and build 
the application. Section IV discusses the result of the dataset analysis and the application's 
implementation, and Section V states some conclusions. 

II. The Proposed Method 

This research proposes three models for predicting the student's score in the One Day Service 
Universitas Muhammadiyah Surakarta: Auto Regression, ARMA (Auto Regressive Moving 
Average), and Triple Exponential Smoothing, which described as follows, 

A. Auto Regression 

As defined in (1), auto-regression is a regression model that utilizes the dependent relationship 
between current observations and past observations. 

𝐴𝑅(𝑡) = 𝑐 + 𝜃1𝑦1
− 1 + 𝜃2𝑦2

− 2 + ⋯ + 𝜃𝑡𝑦𝑡
− 𝑡 + 𝜖, (1) 

with 𝑐 is a constant, 𝜃1 and  𝜃2 are lag coefficients up to order 𝑡, 𝜖 is white noise 

B. ARMA (Auto Regressive Moving Average) 

ARMA is an Auto Regression combined with the moving average model. The moving average 
calculates the average value of the time series and then estimates the value in the next period. Moving 
Average (MA) model for lag order, one follows in (2). 

𝑀𝐴(𝑡) = 𝜇 + 𝜃1 𝜖𝑡−1 + 𝜖, (2) 

With 𝜇 is the expectation of 𝑀𝐴 (often assumed to be zero), 𝜃1 is the 𝑀𝐴 lag coefficient, 𝜖 is white 
noise. A combination of Auto Regression and Moving Average obtained ARMA model (𝐴𝑅𝑀𝐴) for 
lag order 1 in (3). 

𝐴𝑅𝑀𝐴𝑡 = 𝑐 + 𝐴𝑅 ⋅ 𝑦𝑡−1 +  𝑀𝐴 ⋅ 𝜖𝑡−1 +  𝜖 (4) 

With 𝑐 is constant, 𝐴𝑅 is the Auto Regression lag coefficient, 𝑀𝐴 is the Moving Average 
lag coefficient, 𝜖 is white noise. 

C. Triple Exponential Smoothing 

The Triple Exponential Smoothing assigns exponentially decreasing weights as the observation 
gets old. Triple Exponential Smoothing introduces an overall smoothing, trend, and seasonal model 
fitted in the forecasting model. The 𝑦 is the observation, 𝐼 is the seasonal index, and t is an index 
denoting a time period. β, α, γ  are constant and must be estimated to minimize the error. L represents 
the number of divisions per cycle. In our case, L is determined by looking at monthly data that displays 
a repeating pattern each year. Overall smoothing (𝑆𝑡) is defined as,  



ISSN: 1978-0524 JURNAL INFORMATIKA 85 
 Vol. 14, No. 3, September 2020, pp. 83-89 

 Sinar Nadhif Ilyasa et al. (Application to Predict The New Student’s Score...) 

𝑆𝑡 = 𝛼
𝑦𝑡

𝐼𝑡−𝐿
+ (1 − 𝛼)(𝑆𝑡−1 +  𝑏𝑡−1) (4) 

The trend smoothing (𝑏𝑡) in Triple Exponential Smoothing, the equation is denoted as (5), 

𝑏𝑡 =  𝛾(𝑆𝑡 −  𝑆𝑡−1) + (1 −  𝛾)𝑏𝑡−1 

In the Triple Exponential Smoothing, a seasonal smoothing (𝐼𝑡) is added to capture 
seasoanlity that is given by (6), 

𝐼𝑡 =  𝛽
𝑦𝑡

𝑆𝑡
+ (1 −  𝛽)𝐼𝑡−𝐿 (6) 

After the model is fitted, to forecast a series using triple exponential smoothing is given by  
(7), 

𝐹𝑡+𝑚 = (𝑆𝑡 + 𝑚𝑏𝑡)𝐼𝑡−𝐿+𝑚 (7) 

For the forecasting model, the variable m indicates how many periods to forecast.  

III. Method 

The research method uses three models to determine which model better fits in the One Day 
Service (ODS) data. The tested model in this research is ARMA (Auto Regressive Moving Average), 
Auto Regression, and Triple Exponential Smoothing. By comparing these three models' performance, 
the researcher determines which model has the best performance by calculating the error. The research 
step can be seen in Fig. 1. 

The first stage performs a static test in One Day Service (ODS) data that includes students' scores 
in the Faculty of Engineering that occur in 4 years (2017-2019). A Stationary is compulsory to have 
in a dataset so that it can use a forecasting model. Stationarity definition is one whose statistical 
properties do not depend on how the data is observed. A time series with trends or seasonality are not 
stationary. A common approach to test stationarity is by using the Augmented Dicky Fuller test [13]. 
Augmented Dicky Fuller is an augmented version of the Dickey-Fuller test for a more extensive and 
complicated time series model. The Augmented Dicky Fuller test states the null hypothesis is                      
= 1 (this is also called a unit test). A small t-value  (t<0.05)  indicates strong evidence against the null 
hypothesis. For a t-value less than 0.05, the null hypothesis is rejected for unit root, which means the 
dataset is stationary. 

The second step is determining the prediction model. The model tested in this stage is Auto 
Regression, ARMA, and Triple Exponential Smoothing.  

 

Fig. 1. Research steps. 
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The third stage is an evaluation between the test data and prediction data to test the accuracy 
performance by looking at the training and testing data's errors using root mean square error (RMSE). 
Root Mean Square Error (RMSE) is the standard deviation of the residuals (prediction errors). 
Residuals are a measure of how far from the regression line data points are. RMSE is a measure of 
how spread out these residuals are. The formula for RMSE is stated as (9). 

𝑅𝑀𝑆𝐸 =  √∑
(�̂�𝑖 − 𝑦𝑖 )

2

𝑛

𝑛
𝑖=1  

The last stage predicts the number of engineering students in the future based on the best model 
obtained after getting a good enough model to be used as a prediction material. The result is applied 
in the Django web application using a waterfall methodology. The software tools to analyze the One 
Day Service (ODS) Universitas Muhammadiyah Surakarta prediction and develop the application are 
listed in Table 1. 

Table 1.  Development Tools 

No Tools Name Specification 

1 Anaconda Distribution 2019.10 Version 
2 Windows OS Windows 10 Pro 
3 Python 3.7 64 bit 

4 HighChart Free version 
5 MySQL Database 64 bit 
6 Firefox Web Browser Version 72.0.2 (64-bit) 
7 Django Framework Version 2.2 

IV. Results and Discussion 

A. Research Data 

This research data is a stationary dataset, which is the criteria to implement most forecasting 
models like the ARMA model, and the proof is shown in the Data Examination section. An example 
of training data in the ODS (One Day Service) dataset is displayed in Table 2. 

Table 2.  Training Data 

No Participant Test Attempt Date Study Program Choice 1 Study Program Choice 2 Score 

1700011112 2 05/01/2017 Chemical Engineering Civil Engineering 40 
1700011113 3 05/01/2017 Chemical Engineering Architect 52 
1700011211 1 05/01/2017 Industrial Engineering Nutritionist 44 
1700011811 1 05/01/2017 Industrial Engineering Nutritionist 48 
1700012011 1 05/01/2017 Industrial Engineering Economy 42 

Data presented in Table 2 is obtained from ODS (One Day Service) dataset archive. The data itself 
includes the participant number, the participant score, test date, test attempt, and study program 
choice. For our time series analysis, we will only need three features for this forecasting model, the 
test date as our timestamp observation (x-axis), the score to forecast data (y-axis), and the study 
program choice specific study program observation.  

For testing purposes, the researcher uses Industrial Engineering data to test which model will be 
the best fit for prediction. The timestamp used for this forecasting analysis is days because for weekly 
timestamp, and the monthly timestamp for this dataset case do not offer a large enough training 
dataset. More data for training is frequently more accommodating, offering more noteworthy open 
doors for exploratory information examination, model testing, and tuning, and model fidelity. The 
data set the frequency to days, which means all data set are resampled to days (taking average within 
that day). The researcher interpolates the missing values with the dataset's mean to run the forecasting 
model algorithm in Fig. 3 and the raw data before interpolation in Fig. 2. The average score (after 
adding an average rating to the null values) for students enrolling in undergraduate degrees at 
Universitas Muhammadiyah Surakarta majoring in Industrial Engineering ranges from January 2017 
to August 2019 that can be seen in Fig. 3. 
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Based on Fig. 3, the graph shows that it does not have precise seasonal data. The amount of data 
Industrial Engineering majors totaling 960 data will be broken down into training sets and data sets. 
Details of the dataset used in this prediction are described in Table 3. 

Table 3.  Dataset feature 

No Description Value 

1 Count 960 
2 Mean 42.63 
3 Standard deviation 4.25 
4 Minimum Value 20 

5 Maximum Value 72 

 

Fig. 2. Raw average score registrant industrial engineering student. 

 

Fig. 3. Modified average score registrant industrial engineering. 

B. Data Examination 

The ARMA model needs to be stationary; therefore, the dataset needs to examine whether the 
dataset given is stationary or not by looking at the p-value given in the Augmented Dicky Fuller test. 
The test for the Augmented Dicky Fuller Test is shown in Fig. 4. 

 

Fig. 4. ADF test. 

In Fig. 4, the Augmented Dicky Fuller Test, the test result shows that the p-value is 0. Hence, 
because the p-value is less than 0.05, the data has no root, and it will reject the null hypothesis. The 
ADF test result shows that the dataset is stationary [13]. 

C. Prediction Results 

For sample purposes, the researcher examines the Industrial Engineering dataset, and the test data 
set is taken as much as the last 20-200 days of data from Industrial Engineering. The sample dataset 
average score is 41.59; it is obtained by adding all the numbers in the dataset and dividing them by 
the amount of the data, calculated using the pandas' library. The stats model library performs a grid 
search to determine the ARMA order and the lag order in Auto Regression. In Fig. 5, the Auto 
Regression model (Orange line) almost performs the same as ARIMA predictions (Redline). In 
contrast, the Triple Exponential Smoothing model (Green line) shows a slight difference from the 
other model. To obtain the most optimal result, we wanted to achieve a model that matches the closest 
to the test data set with the prediction result and avoid overfitting. Overfitting is a crucial issue in 
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supervised machine learning which forestalls us from generalizing the models to fit practical 
information on preparing information, just as inconspicuous information on testing sets. [14]. 

Fig. 5 shows that overall there is a slight deviation to the mean among all three algorithms used. 
The slight variation is likely to occur because of the missing dataset interpolated with the mean. 
Overall, the prediction result performs well in capturing the trend or moving average, but it does not 
fit all test data well. 

Table 4.  Day Forward-Chaining Cross Validation 

Data Index Auto Regression ARMA Triple Exponential Smoothing 

780-960 4.62 4.65 8.19 
800-960 4.50 4.76 6.47 

820-960 4.27 4.29 5.33 
840-960 4.13 4.12 4.20 
860-960 4.32 4.36 4.47 
880-960 4.09 4.09 4.23 
900-960 3.95 3.95 3.94 
920-960 4.06 4.03 4.02 
940-960 4.38 4.46 6.40 

A cross-validation test evaluates the machine learning model in the Industrial Engineering dataset. 
This research's cross-validation technique is Day Forward-Chaining; it is based on a method called 
forward-chaining (also referred to as rolling-origin evaluation) [15]. In this technique, the researcher 
creates nine train/test splits and calculates the RMSE all over the splits. The technique successively 
considers each day as the test set and assigns all previous data into the training set. The cross-
validation results are shown in Table 4. 

Based on Table 2, the results show that the total error obtained in the Auto Regression model is 
smaller comparing to the ARMA and Triple Exponential Smoothing model when performing cross-
validation using the Day Forward-Chaining test. The results also show consistency in performance in 
terms of error rate when comparing these three models. The Triple Exponential Smoothing has the 
average highest error among the other models. It is because the Triple Exponential Smoothing is 
overfitting the model. Evaluating our forecast result, minimizing the RMSE leads to forecasts of the 
mean. The fewer RMSE values, the better result. 

 

Fig. 5. Evaluation performance model. 

 

Fig. 6. Prediction application. 

D. Implementation 

The research output is a web application that allows predicting student's admission scores in the 
One Day Service (ODS) data according to each study program. Prediction starts from the end of the 
training dataset given. There are two input forms in this program, the first option is to select a study 
program, and the second input form is to determine how many days to predict. 
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Fig. 6 shows the program's interface in the web browser running in localhost implemented using 
the Django Framework. The users can choose the study major and determine how many days to 
predict. After submitting, it will show the corresponding score prediction result that is visualized by 
the HighChart graph. 

V. Conclusion 

This prediction result is useful in capturing the trend or the moving average of the data but does 
not capture all test data due to some other data points are still not fitted well. Based on the results 
obtained, the errors between the three types of models are not significant, but overall the Auto 
Regression has the best performance. The Auto Regression model and ARMA model's error is very 
close, unlike the Triple Exponential Smoothing that has the most error in this case. In this research, 
the Auto Regression model is chosen to be used as a prediction model in One Day Service (ODS) 
Universitas Muhammadiyah Surakarta. It has a better performance than ARMA and Triple 
Exponential Smoothing and a higher chance to avoid overfitting than the other two models that are 
more complex. A simple model is preferred when dealing with a series with no trends or seasonality. 
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