Effect of temperature and time on alkaline pretreatment and alkaline microwave-assisted pretreatment on banana stem composition
DOI:
https://doi.org/10.26555/chemica.v10i3.27329Keywords:
Alkaline, Banana Stem, Cellulose, Lignin, Microwave-Assisted, PretreatmentAbstract
Banana stem waste is a source of lignocellulose biomass with a high cellulose content and abundant availability in Indonesia. In this work, we investigated the effect of time and temperature on the decrease in rate of lignin in lignocellulose. Banana stem waste was pretreated with alkaline and alkaline microwave-assisted so that the percentage of lignin contained in lignocellulose biomass were reduced and the percentage of cellulose were increased. In alkaline pretreatment, 6% KOH is added to lignocellulose and heated to a hotplate during contact time variation (10, 20, 30, 40, and 50 min) with temperature variations (55, 65, 75, 85, and 95 oC). In pretreatment, an alkaline microwave–assisted 6% KOH solution was added to lignocellulose and heated for 20 min with temperature variations (55, 65, 75, 85, and 95 oC), then was put into a microwave that has a wave power of 360 Hz with variations in contact time (55, 65, 75, 85 and 95 min). After pretreatment, the sample was analyzed using the Chesson method to determine the percentage of cellulose, hemicellulose and lignin. Analysis showed that alkaline and microwave-assisted alkaline pretreatments effectively reduce the lignin percentage and increase the cellulose percentage in lignocellulose. The most remarkable performance in both pretreatments was obtained when working at 95 oC with a contact time of 50 min. Based on process optimization, it was concluded that microwave-assisted alkaline pretreatment reduced the percentage of lignin more and increased the percentage of cellulose compared to alkaline KOH pretreatment, which decreased the rate of lignin by 43.26% and increased the rate of cellulose by 60.68%. For further research, it can be continued to the next process, namely hydrolysis to produce glucose as a raw material for the bioethanol production process.References
Ancastami, E. Azwar, L. Lismeri, and R. Santoso, “Pengaruh Konsentrasi Asam Formiat dan Waktu Reaksi pada Proses Delignifikasi Metode Organosolv dari Limbah Batang Pisang (Musa Parasidiaca),” Inov. Pembang. J. Kelitbangan, vol. 8, no. 02, p. 147, Aug. 2020, doi: https://doi.org/10.35450/jip.v8i02.195.
Badan Pusat Statistik dan Direktorat Jenderal Hortikultura, “Luas Panen Pisang Menurut Provinsi , Tahun 2015-2019,” 2019.
Badan Pusat Statistik, “Produksi Tanaman Buah-Buahan,” 2021.
Istiqomah and D. E. Kusumawati, Buku Ajar Pertanian Terpadu Berbasis Bebas Limbah. Lamongan: Duta Media Publising, 2022.
J. Ralph, C. Lapierre, and W. Boerjan, “Lignin structure and its engineering,” Curr. Opin. Biotechnol., vol. 56, pp. 240–249, 2019, doi: 10.1016/j.copbio.2019.02.019.
P. D. Sari, W. A. Puri, and D. Hanum, “Delignifikasi Bonggol Jagung dengan metode Microwave Alkali,” vol. 12, 2018, doi: https://doi.org/10.31328/ja.v12i2.767.
A. Ditia et al., “Telaah Potensi Penerapan Teknologi Terkini pada Hidrolisis Selulosa dengan Sistem Pengendalian Terintegrasi dalam Proses Bioetanol G2,” J. SELULOSA, vol. 11, no. 01, p. 21, 2021, doi: http://dx.doi.org/10.25269/jsel.v11i01.320.
M. A. Kassim, T. K. Meng, K. Y. Seng, and N. A. Serri, “Alkaline-assisted microwave pretreatment of tetraselmis suecica biomass for fed-batch enzymatic hydrolysis,” J. Eng. Technol. Sci., vol. 51, no. 2, pp. 272–289, 2019, doi: 10.5614/j.eng.technol.sci.2019.51.2.8.
D. M. Ihsan, “Optimasi Delignifikasi Tandan Kosong Kelapa Sawit menggunakan Batch lab-Scale dan Ekstruksi pada Reaktor Kontinu untuk Produksi Bioetanol,” 2022.
F. Junianti, “Produksi Hidrogen Dari Sabut Kelapa Melalui Pretreatment Air Subkritis Dan Hidrolisis Enzimatik,” Institut Teknologi Sepuluh November, Surabaya, 2016. [Online]. Available: https://core.ac.uk/download/pdf/291472449.pdf
Sivanarutselvi, P. Poornima, Muthukumar, and M. Velan, “Studies on effect of alkali pretreatment of banana pseudostem for fermentable sugar production for biobutanol production,” vol. 40, no. May, p. 2019, 2019.
R. Datta, “Acidogenic fermentation of Lignocellulose–Acid Yield and Conversion of Components,” Biotechnol. Bioeng., vol. 23, no. 9, pp. 2167–2170, 1981, doi: https://doi.org/10.1002/bit.260230921.
J. S. Kim, Y. Y. Lee, and T. H. Kim, “A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass,” Bioresour. Technol., vol. 199, pp. 42–48, 2016, doi: https://doi.org/10.1016/j.biortech.2015.08.085.
P. Moodley and E. B. Gueguim Kana, “Development of a steam or microwave-assisted sequential salt-alkali pretreatment for lignocellulosic waste: Effect on delignification and enzymatic hydrolysis,” Energy Convers. Manag., vol. 148, pp. 801–808, 2017, doi: https://doi.org/10.1016/j.enconman.2017.06.056.
J. C. Low et al., “Enhancing enzymatic digestibility of alkaline pretreated banana pseudostem for sugar production,” BioResources, vol. 10, no. 1, pp. 1213–1223, 2015, doi: https://doi.org/10.15376/biores.10.1.1213-1223.
Deivy Andhika Permata, Anwar Kasim, Alfi Asben, and Yusniwati, “Delignification of Lignocellulosic Biomass,” World J. Adv. Res. Rev., vol. 12, no. 2, pp. 462–469, 2021, doi: https://doi.org/10.30574/wjarr.2021.12.2.0618.
Zahoor et al., “Rice straw pretreatment with KOH/urea for enhancing sugar yield and ethanol production at low temperature,” Ind. Crops Prod., vol. 170, no. June, p. 113776, 2021, doi: https://doi.org/10.1016/j.indcrop.2021.113776
S. Winarsih, “Pengaruh Konsentrasi NaOH dan Lama Pemaparan Microwave terhadap Kandungan Selulosa, Hemiselulosa dan Lignin Tongkol Jagung,” pp. 285–290, 2016.
B. Susilo, R. Damayanti, and N. Izza, Teknik Bioenergi. Malang: UB Press, 2017. [Online]. Available: https://books.google.co.id/books?id=KDhTDwAAQBAJ&printsec=frontcover&hl=id#v=onepage&q&f=false
A. Kamalini, S. Muthusamy, R. Ramapriya, B. Muthusamy, and A. Pugazhendhi, “Optimization of sugar recovery efficiency using microwave assisted alkaline pretreatment of cassava stem using response surface methodology and its structural characterization,” J. Mol. Liq., vol. 254, pp. 55–63, 2018, doi: https://doi.org/10.1016/j.molliq.2018.01.091.
Downloads
Published
Issue
Section
License
Chemica: Jurnal Teknik Kimia allows readers to read, download, copy, distribute, print, search, or link to its articles' full texts and allows readers to use them for any other lawful purpose. The journal allows the author(s) to hold the copyright without restrictions. Finally, the journal allows the author(s) to retain publishing rights without restrictions
- Authors are allowed to archive their submitted articles in an open access repository
- Authors are allowed to archive the final published article in an open access repository with an acknowledgment of its initial publication in this journal
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 Generic License.
Â