METODE UNIVERSAL THRESHOLD DALAM TRANSFORMASI WAVELET DISKRET PADA KASUS SINYAL SUARA
DOI:
https://doi.org/10.12928/admathedu.v8i1.11115Keywords:
transformasi wavelet diskrit, universal threshold, sinyal suara.Abstract
Masalah yang terjadi pada sinyal suara adalah terjadinya noise yang mengkontaminasi proses pengolahannya. Dalam hal ini, diperlukan suatu proses reduksi noise untuk mengurangi noise yang terdapat pada sinyal suara. Reduksi noise di sini dilakukan dengan menerapkan transformasi wavelet diskri yang terdiri dari tiga langkah utama yaitu: dekomposisi sinyal, proses thresholding dan rekonstruksi sinyal. Penelitian ini bertujuan untuk mengkaji metode universal threshold untuk mendapatkan nilai threshold dan aplikasinya pada kasus sinyal suara yang terkontaminasi Gaussian noise. Metode yang dilakukan adalah kajian literatur referensi-referensi terkait transformasi wavelet diskrit dan sinyal suara. Nilai threshold yang digunakan dalam proses thresholding ditentukan dengan metode universal threshold yang dikaji agar threshold yang diperoleh memberikan hasil optimal ketika dibandingkan dengan koefisien wavelet  hasil penerapan aturan hard atau soft thresholding. Hasil aplikasi dan simulasi reduksi noise dengan wavelet menunjukkan bahwa nilai SNR berbanding terbalik dengan nilai MSE, sedangkan nilai nilai threshold sebanding dengan nilai MSE.
References
Amiri, G. G, and Asadi, A. 2000, Comparison of Different Methods of Wavelet and Wavelet Packet Transform, International Journal of Civil Engineering. 7(4): 248-257.
Antoniadis, A., Bigot, J. and Sapatinas, T., 2001, Wavelet Estimators in Nonparametric Regresión: A Comparative Simulation Study, Journal of Statistical Software, 6(6):1-83.
Daubechies I., 1992, Ten lectures on wavelets. Vermont: CBMS - NSF Conference Series in Applied Mathematics, Montpelier.
Delyon, B. and Juditsky, A., 1995. Estimating Wavelet Coefficients in Wavelets and Statistics. Antoniadis, A. dan Oppenheim, G. (Eds), Lect. Notes Statist., 103, pp. 15-168.
Effern, A., Lehnertz, k., Schreiber, T., Grundwald, T., David, P. and Elger, C. E. 2000, Nonlinear Denoising of Transient Signals with Application to Event-related Potentials, Physica, 140: 257-266.
Ergen, B. 2013, “Comparison of Wavelet Types and Thresholding Methods on Wavelet Based Denoising of Heart Sounds†in Journal of Signal and Information Processing, pp. 164-167
Fan X, and Zuo MZ. 2006, Gearbox fault detection using Hilbert and wavelet packet transform, Mechanical Systems and Signal Processing, 20: 966 -982.
Greiff, H. F.C, Garcia, R.R and L-Ginori, J. V. 2002, Signal De-noising in Magnetic Resonance Spectroscopy Using Wavelet Transforms, 14(6): 388-401.
Mahdavi, F. A., Ahmad, S. A., Marhaban, M. H. and Akbarzadeh-T,M-R. 2013, The Utility of Wavelet Transform in Surface Electromyography Feature Extraction - A Comparative Study of Different Mother Wavelets. International Journal of Biomedical and Biological Engineering, 7(2): 107-112.
Mallat, S. G., 1999, A Wavelet Tour of Signal Processing, London : Second edition Academic press.
Meyer, Y., 1992, Wavelets and Operator, Cambridge: Cambridge University Press.
Nikolaev N, Nikolov Z, Gotchev A, Egiazarian K. 2000, “Wavelet domain Wiener filtering for ECG denoising using improved signal estimate†in IEEE International Conference on Acoustics, Speech, and Signal Processing, pp 3578–3581.
Phinyomark, A., Limsakul, C. and Phukpattaranont, P. 2011, Application of wavelet analysis in EMG feature extraction for pattern classification. Measurement Science Review, 11(2): 45-52.
Rajasekaran, S., Latha, V. and Lee, S.C. 2006, Generation of artificial earthquake motion records using wavelets and principal component analysis, Journal of Earthquake Engineering, 10(5): 665-691.
Rioul, O., 1993, “Discrete-Time Multiresolution Theory,†in IEEE Trans. on Signal Processing: pp. 2591-2605.
Downloads
Published
Issue
Section
License
License and Copyright Agreement
In submitting the manuscript to the journal, the authors certify that:
- They are authorized by their co-authors to enter into these arrangements.
- The work described has not been formally published before, except in the form of an abstract or as part of a published lecture, review, thesis, or overlay journal. Please also carefully read the AdmathEdu Author Guidelines at http://journal.uad.ac.id/index.php/admathedu/about/submissions#onlineSubmissions
- That it is not under consideration for publication elsewhere,
- That its publication has been approved by all the author(s) and by the responsible authorities “tacitly or explicitly“ of the institutes where the work has been carried out.
- They secure the right to reproduce any material that has already been published or copyrighted elsewhere.
- They agree to the following license and copyright agreement.
Copyright
Authors who publish with the AdmathEdu agree to the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional.