Application of gabor transform in the classification of myoelectric signal

Jingwei Too, A. R. Abdullah, N. Mohd Saad, N. Mohd Ali, T. N. S. Tengku Zawawi


In recent day, Electromyography (EMG) signal are widely applied in myoelectric control. Unfortunately, most of studies focused on the classification of EMG signals based on healthy subjects. Due to the lack of study in amputee subject, this paper aims to investigate the performance of healthy and amputee subjects for the classification of multiple hand movement types. In this work, Gabor transform (GT) is used to transform the EMG signal into time-frequency representation. Five time-frequency features are extracted from GT coefficient. Feature extraction is an effective way to reduce the dimensionality, as well as keeping the valuable information. Two popular classifiers namely k-nearest neighbor (KNN) and support vector machine (SVM) are employed for performance evaluation. The developed system is evaluated using the EMG data acquired from the publicy available NinaPro Database. The results revealed that the extracting GT features can achieve promising performance in the classification of EMG signals.


electromyography; gabor transform; K-nearest neighbor; support vector machine;

Full Text:



Article Metrics

Abstract view : 62 times
PDF - 31 times


  • There are currently no refbacks.

Copyright (c) 2018 Universitas Ahmad Dahlan

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus, 9th Floor, LPPI Room
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120 ext. 4902, Fax: +62 274 564604

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.