Metamodel-based Optimization of a PID Controller Parameters for a Coupled-tank System

Marwan Nafea, Abdul Rasyid Mohammad Ali, Jeevananthan Baliah, Mohamed Sultan Mohamed Ali


Liquid flow and level control are essential requirements in various industries, such as paper manufacturing, petrochemical industries, waste management, and others. Controlling the liquids flow and levels in such industries is challenging due to the existence of nonlinearity and modeling uncertainties of the plants. This paper presents a method to control the liquid level in a second tank of a coupled-tank plant through variable manipulation of a water pump in the first tank. The optimum controller parameters of this plant are calculated using radial basis function neural network metamodel. A time-varying nonlinear dynamic model is developed and the corresponding linearized perturbation models are derived from the nonlinear model. The performance of the developed optimized controller using metamodeling is compared with the original large space design. In addition, linearized perturbation models are derived from the nonlinear dynamic model with time-varying parameters.


Radial basis function; metamodeling; liquid mixing process; numerical optimization;

Full Text:




  • There are currently no refbacks.

Copyright (c) 2018 Universitas Ahmad Dahlan

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
online system:
Phone: +62 (274) 563515, 511830, 379418, 371120 ext: 3208
Fax    : +62 (274) 564604