Noise Level Estimation for Digital Images Using Local Statistics and Its Applications to Noise Removal

Asem Khmag, Sami Ghoul, Syed Abdul Rahman Al-Haddad, Noraziahtulhidayu Kamarudin

Abstract


In this paper, an automatic estimation of additive white Gaussian noise technique is proposed. This technique is built according to the local statistics of Gaussian noise. In the field of digital signal processing, estimation of the noise is considered as pivotal process that many signal processing tasks relies on. The main aim of this paper is to design a patch-based estimation technique in order to estimate the noise level in natural images and use it in blind image removal technique. The estimation processes is utilized selected patches which is most contaminated sub-pixels in the tested images sing principal component analysis (PCA). The performance of the suggested noise level estimation technique is shown its superior to state of the art noise estimation and noise removal algorithms, the proposed algorithm produces the best performance in most cases compared with the investigated techniques in terms of PSNR, IQI and the visual perception.


Keywords


additive noise; noise estimation; principal components analysis; patch selection; image denoising;

Full Text:

PDF


DOI: http://dx.doi.org/10.12928/telkomnika.v16i2.9060

Article Metrics

Abstract view : 139 times
PDF - 184 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Universitas Ahmad Dahlan

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus, 9th Floor, LPPI Room
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120 ext. 4902, Fax: +62 274 564604

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

View TELKOMNIKA Stats