Optimal Control for Torpedo Motion based on Fuzzy-PSO Advantage Technical

Viet Dung Do, Xuan Kien Dang


The torpedo is a nonlinear object which is very difficult to control. Via to manage the rudder angle yaw, the diving plane angle, and the fin shake reduction, the torpedo yaw horizontal, the depth vertical and roll damping of the system are controlled accurately and steadily. In this paper, the particle swarm optimization is used to correct the imprecision of architecture fuzzy parameters. The coverage width of membership function and the overlap degree influence of neighboring membership functions are considered in the method to adjust dynamically from the system errors. Thereby optimizing the control signal and enhancing the torpedo motion quality. The proposed method results in a better performance compared to the other control method such as adaptive fuzzy-neural that proved effective of the proposed controller.


fuzzy controller; particle swarm optimization; neighboring membership functions; nonlinear object; torpedo motion;

Full Text:


DOI: http://dx.doi.org/10.12928/telkomnika.v16i6.8979

Article Metrics

Abstract view : 51 times
PDF - 42 times


  • There are currently no refbacks.

Copyright (c) 2018 Universitas Ahmad Dahlan

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus, 9th Floor, LPPI Room
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120 ext. 4902, Fax: +62 274 564604

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.