Crosstalk Improvement of Polymer in Glass Thermo-Optical Multimode Interference Switch

N. Samdin N. Samdin, M. Yaacob M. Yaacob, M.H. Ibrahim M.H. Ibrahim, A.B. Mohammad A.B. Mohammad, N.M. Kassim N.M. Kassim

Abstract


A new structural design of combined variable optical attenuator (VOA) and optical switch has been proposed in this paper. The design is based on the multimode interference (MMI) architecture and it has been demonstrated for crosstalk improvement of optical switch. The device operates by manipulating thermo-optic (TO) effect that naturally existed in all optical waveguide material. By applying a polymer on glass material platform, the optimized VOA with optical attenuation of 21.52 dB has been achieved with applied power of 36.4 mW. The simulation result shows that the VOA helps to achieve significant improvements of optical switch performance particularly in crosstalk reduction up to 89.66%. 


Full Text:

PDF

References


. Ke X, Wang MR and Li D. All-optical Controlled Variable Optical Attenuator using Photochromic Sol Gel Material. IEEE Photonics Technology Letters. 2006; 18: 1025-1027.

. Hurvitz T, Ruschin S, Brooks D, Hurvitz G and Arad E. Variable Optical Attenuator Based on Ion-Exchange Technology in Glass. IEEE Journal of Lightwave Technology. 2005; 23: 1918-1922.

. Qing F, Fang L, Chunxia W, Hongli X and Yuliang L. A Low Power Consumption Thermo-Optic Variable Optical Attenuator Based on Soi Material. 7th International Conference on Solid-State and Integrated Circuits Technology. 2004; 3: 2018-2020.

. Xia J, Yu J, Wang Z, Fan Z and Chen S. Low Power 2 × 2 Thermo-Optic Soi Waveguide Switch Fabricated by Anisotropy Chemical Etching. Optics Communications. 2004; 232: 223-228.

. Kim S, Hung YC, Geary K, Yuan W, Fetterman HR, Dinu DJR and Steier WH. Metal-defined Polymeric Variable Optical Attenuator. Electronics Letters. 2006; 18: 1055-1057.

. Sang-Shin L, Yong-Sung J and Yung-Sung S. Variable Optical Attenuator Based on a Cut off Modulator with Tapered Waveguides in Polymers. IEEE Journal of Lightwave Technology. 1999; 17: 2556-2561.

. May-Arrioja DA, Selvas-Aguilar RJ, Escobedo-Alatorre P, LikamWa P, and Mondragon JJS. Variable Optical Attenutor Using Active Multimode Interference Waveguide. Proceedings of SPIE - The International Society for Optical Engineering. 2004; 5622: 731-734.

. Jiang X, Li X, Zhou H, Yang J, Wang M, Wu Y and Ishikawa S. Compact Variable Optical Attenuator Based on Multimode Interference Coupler. Optics Communications. 2005; 17: 2361-2363.

. He Y, Yang L, Fang Q, Xin H, Li F and Liu Y. Influence of Thermal Isolating Grooves on the Performance of the Mach-Zehnder Interferometer-Type Thermo-Optic Variable Optical Attenuator. Optical Engineering Letters. 2005. 44: 1-2.

. Noh Y-O, Lee C-H, Kim J-M, Hwang W-Y, Won Y-H, Lee H-J, Han S-G and Oh M-C. Polymer Waveguide Variable Optical Attenuator and its Reliability. Optics Communications. 2004; 242: 533-540.

. Yang L, Yu Y, Li F, Cheng Y, Qiu H and Wang Q. Simulations and Fabrication of Thermo-Optic Variable Optical Attenuators Based on Multimode Interference Coupler. International Journal of Modern Physics B. 2004; 16: 4275-4278.

. Diemeer MBJ. Polymeric Thermo-Optic Space Switches for Optical Communications. Optical Materials. 1998; 9: 192-200.

. Louay Eldada. Polymer Integrated Optics: Promise vs. Practicality. DuPont Photonics Publications. 2002.

. Louay Eldada and L. W. Shacklette. Advances in Polymer Integrated Optics. IEEE Journal of Selected Topics in Quantum Electronics. 2000; 6: 54–68.

. Ibrahim MH, Lee S-Y, Chin M-K, Kassim NM and Mohammad AB. Multimode Interference Optical Splitter Based on Photodefinable Benzocyclobutene (BCB 4024-40) Polymer. Optical Engineering. 2007; 46: 013401-013404.

. Ibrahim MH, Kassim NM, Mohammad AB, Lee S-Y and Chin M-K. A Novel 1 × 2 Multimode Interference Optical Wavelength Filter Based on Photodefinable Benzocyclobutene (BCB 4024-40) Polymer. Microwave and Optical Technology Letters. 2007; 49: 1024-1028.

. Ibrahim MH, Lee S-Y, Chin M-K, Kassim NM and Mohammad AB. Multimode interference wavelength multi/demultiplexer for 1310 and 1550 nm operation based on BCB 4024-40 photodefinable polymer. Optics Communications. 2007; 273: 383-388.

. Bryngdahl O. Image formation using self-imaging technique. Journal of the Optical Society of America. 1973; 63: 416-419.

. Ulrich R and Ankele G. Self-imaging in Homogeneous Planar Optical Waveguides. Applied Physics Letters. 1975. 27; 337-339.

. Soldano LB and Penning MC. Optical Multi-Mode Interference Devices Based on Self-Imaging: Principle and Application. IEEE Journal of Lightwave Technology. 1995; 13: 615-627.

. The Dow Chemical Company. Product Literature: Cyclotene™ Advanced Electronic Resins. 1999.

. Mohd Haniff Ibrahim. Polymer Based Multimode Interference Optical Devices. PhD Thesis. Malaysia Universiti Teknologi Malaysia; 2007.

. Wang W-K, Lee HJ and Anthony PJ. Planar Silica-Glass Optical Waveguides with Thermally Induced Lateral Mode Confinement. IEEE Journal of Lightwave Technology. 1996; 14: 429-436.

. A.S.M. Supa’at. Design and Fabrication of a Polymer Based Directional Coupler Thermooptic Switch. PhD Thesis. Malaysia: Universiti Teknologi Malaysia; 2004.

. Yaacob M, Ibrahim MH, Kassim NM, Mohammad AB and Supa’at ASM. Switching Power Improvement of Hybrid Polymer-Silica Based MMI Thermo-Optical Switch. Journal of Optoelectronics and Advanced Materials. 2009; 11: 559-564.

. Papadimitriou GI, Papazoglou C and Pomportsis AS. Optical Switching, Wiley-Interscience. 2007.

. Samdin N. Multimode Interference Structure for Thermo Optic Switch and Variable Optical Attenuator. Master in Electrical Engineering Thesis. Malaysia: Universiti Teknologi Malaysia; 2011.

. Yang M-S, Noh YO, Won YH and Hwang W-Y. Very Low Crosstalk 1×2 Digital Optical Switch Integrated with Variable Optical Attenuators. Electronics Letters. 2001; 37: 587-588.

. Jiang X, Qi W, Zhang H, Tang Y, Hao Y, Yang J and Wang M. Low Crosstalk 1 × 2 Thermooptic Digital Optical Switch with Integrated S-Bend Attenuator. IEEE Photonics Technology Letters. 2006; 18: 610-612.




DOI: http://dx.doi.org/10.12928/telkomnika.v10i2.813

Article Metrics

Abstract view : 228 times
PDF - 191 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Universitas Ahmad Dahlan

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus, 9th Floor, LPPI Room
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120 ext. 4902, Fax: +62 274 564604

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

View TELKOMNIKA Stats