Rotation Invariant Indexing For Image Using Zernike Moments and R–Tree

Saptadi Nugroho, Darmawan Utomo

Abstract


The Zernike moment algorithm and R-Tree algorithm are known as state of the art in the recognition of images and in the multimedia database respectively. The methods of storing the images and retrieving the similar images based on a query image automatically are the problems in the image database. This paper proposes the method to combine the Zernike moments algorithm and the R–tree algorithm in the image database. The indices of images which are retrieved from the extraction process using Zernike moments algorithm are used as the multidimensional indices to recognize the images. The multidimensional indices of Zernike moments which are stored in the R–tree are compared to the magnitudes of Zernike moments of a query image for searching the similar images. The result shows that the combination of these algorithms can be used efficiently in the image database because the recognition accuracy rate using Zernike moments algorithm is 95.20%.


Full Text:

PDF

References


Fadlil A. An Automatic Identification Systems of Human Skin Irritation. Indonesian Journal of Electrical Engineering TELKOMNIKA. 2010; 8(3): 255–264.

Putra IKGD, Erdiawan. High Performance Palmprint Identification System Based on Two Dimensional Gabor. Indonesian Journal of Electrical Engineering TELKOMNIKA. 2010; 8(3): 309–318.

Zernike F. Beugungstheorie des Schneidenverfahrens und seiner verbesserten Form, der Phasenkontrastmethode. Physica. 1934; 1(7-12): 689-704.

Khotanzad A, Hong YH. Invariant image recognition by Zernike moments. IEEE Transaction Pattern Analysis and Machine Intelligence. 1990; 12(5): 489-497.

Li S, Lee M-C, Pun C-M . Complex Zernike Moments Features for Shape–Based Image Retrieval. IEEE Transaction on Systems, MAN, and Cybernetics – Part A: System and Humans. 2009; 39(1): 227–237.

Xia T, Zhu H, Shu H, Haigron P, Luo L. Image Description with generalized pseudo–Zernike moments. Journal of the Optical Society of America A, Optics, Image Science, and Vision. 2007; 24(1): 50–59.

Deepika CL, Kandaswamy A, Vimal C, Sathish B. Invariant Feature Extraction from Fingerprint Biometric Using Pseudo Zernike Moments. Proceedings of the International Joint Journal Conference on Engineering and Technology. 2010: 104–108.

Guttman A. R-trees: a Dynamic Index Structure for Spatial Searching. Proceeding ACM SIGMOD Conference on Management of Data. Boston. 1984; 47–57.

Sellis T, Roussopoulos N, Faloutsos C. The R+-tree – a Dynamic Index for Multidimensional Objects. Proceedings 13th International Conference on Very Large Data Bases. Brighton. 1987: 507-518.

Beckmann N, Kriegel HP, Schneider R, Seeger B. The R*-Tree: An Efficient and Robust Access Method for Points and Rectangles. Proceedings ACM SIGMOD Conference on Management of Data. Atlantic City. 1990: 322-331.

Jagadish HV. Spatial Search with Polyhedra. Proceedings 6th IEEE International Conference on Data Engineering. Orlando. 1990: 311-319.

Schneider R, Kriegel HP. The TR*-tree: A new representation of polygonal objects supporting spatial queries and operations. Proceedings of the Seventh Workshop on Computational Geometry, in Lecture Notes in Computer Science 553, Springer-Verlag. Berlin/Heidelberg/New York. 1992: 249–264.

Kamel I, Faloutsos C. Hilbert R-tree - an Improved R-tree Using Fractals. Proceedings 20th International Conference on Very Large Data Bases. Santiago. 1994: 500-509.

Berchtold S, Keim DA, Kriegel HP. The X-tree - an Index Structure for High-Dimensional Data. Proceedings 22nd International Conference on Very Large Data Bases. Bombay. 1996: 28-39.

Gorawski M, Malczok R. Distributed Spatial Data Warehouse Indexed with Virtual Memory Aggregation Tree. Proceedings 2nd International Workshop on Spatio-Temporal Database Management. Toronto. 2004: 25-32.

Manolopoulos Y, Nanopoulos A, Papadopoulos AN, Theodoridis Y. R–Trees: Theory and Application. First Edition. London: Springer–Verlag London. 2006: 3–6.

Gaede V, Guenther O. Multidimensional Access Methods. ACM Computing Surveys. 1998; 30(2): 170–231.

Nugroho S. Mengindeks Citra dengan Memanfaatkan Parameter Zernike. Bachelor Thesis. Salatiga: Electronic and Computer Engineering Faculty at Satya Wacana Christian University; 2002.

Utomo D. Similarity searching in medical image databases using R*-Tree. Master Thesis. Bangkok: School of Advanced Technology Asian Institute of Technology; 1999.




DOI: http://dx.doi.org/10.12928/telkomnika.v9i2.705

Article Metrics

Abstract view : 98 times
PDF - 83 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2014 Universitas Ahmad Dahlan

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus, 9th Floor, LPPI Room
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120 ext. 4902, Fax: +62 274 564604

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

View TELKOMNIKA Stats