Estimating Parameter of Nonlinear Bias Correction Method Using NSGA-II in Daily Precipitation Data

Angga Wahyu Pratama, Agus Buono, Rahmat Hidayat, Hastuadi Harsa


Nonlinear (NL) method is the most effective bias correction method for correcting statistical bias when observation precipitation data can not be approximated using gamma distribution. Since NL method only adjusts mean and variance, it does not perform well in handling bias on quantile values. This paperpresents a scheme of NL method with additional condition aiming to mitigate bias on quantile values. Non-dominated Sorting Genetic Algorithm II (NSGA-II) was applied to estimate parameter of NL method. Furthermore, to investigate suitability of application of NSGA-II, we performed Single Objective Genetic Algorithm (SOGA) as a comparison. The experiment results revealed NSGA-II was suitable when solution of SOGA produced low fitness. Application of NSGA-II could minimize impact of daily bias correction on monthly precipitation. The proposed scheme successfully reduced biases on mean, variance, first and second quantile However, biases on third and fourth moment could not be handled robustly while biases on third quantile only reduced during dry months.


java island; chirps; daily precipitation; multi-objective; genetic algorithm

Full Text:



Article Metrics

Abstract view : 160 times
PDF - 236 times


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus, 9th Floor, LPPI Room
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120 ext. 4902, Fax: +62 274 564604