Augmented Reality Prototype for Visualising Large Sensors’ Datasets

Folorunso Olufemi A., Mohd Shahrizal S. Mohd Shahrizal S., Ikotun Abiodun M.

Abstract


This paper addressed the development of an augmented reality (AR) based scientific visualization system prototype that supports identification, localisation, and 3D visualisation of oil leakages sensors datasets. Sensors generates significant amount of multivariate datasets during normal and leak situations which made data exploration and visualisation daunting tasks. Therefore a model to manage such data and enhance computational support needed for effective explorations are developed in this paper. A challenge of this approach is to reduce the data inefficiency. This paper presented a model for computing information gain for each data attributes and determine a lead attribute.The computed lead attribute is then used for the development of an AR-based scientific visualization interface which automatically identifies, localises and visualizes all necessary data relevant to a particularly selected region of interest (ROI) on the network. Necessary architectural system supports and the interface requirements for such visualizations are also presented.


Full Text:

PDF

References


Gross M. Visual computing, the integration of computer graphics. Visual Perception and Imaging. Springer, Berlin, 1994.

Louis B, Godin G, Blais F, Beraldin JA, Massicotte P, Poirier G. Visualizing and analyzing large and detailed 3d datasets. Visual Information Technology Group, Institute for Information Technology, National Research Council of Canada. Ottawa, Ontario, Canada. 2005:1-9.

Hoppe H. New quadric metric for simplifying meshes with appearance attributes. Proceedings IEEE Visualization 1999. New York: IEEE Computer Society Press. 1999:59–66.

Levoy M, Pulli K, Curless B, Rusinkiewicz S, Koller D, Pereira L, et al. The Digital Michelangelo Project: 3D scanning of large statues. Proceedings of ACM SIGGRAPH, Computer Graphics Proceedings. Annual Conference Series. ACM. 2000: 31–144.

Yoon SE, Lindstrom P, Pascucci V, Manocha D. Cache-oblivious mesh layouts. ACM Trans. Graph. 2005; (24)3: 886–893.

Reitmayr G, Schmalstieg D. Collaborative Augmented Reality for Outdoor Navigation and Information Browsing. Proceedings of Symp. Location Based Services and TeleCartography. 2004: 31-41.

Zwicker M, R¨as¨anen J, Botsch M, Dachsbacher C, Pauly M. Perspective accurate splatting. Proceedings of the Graphics Interface Conference. Canadian Human- Computer Communications Society. Waterloo, Ontario, Canada. 2004: 247– 254.

White S. Interaction with the Environment: Sensor Data Visualization in Outdoor Augmented Reality. International Symposium on Mixed and Augmented Reality (ISMAR). Basel, Switzerland. 2009: 39-48.

Julier S, Lanzagorta M, Baillot Y, Rosenblum L, Feiner S, Höllerer T, Sestito S. Information filtering for mobile augmented reality. Proceeding of the ACM and IEEE ISAR. Washington, DC. 2000: 3-11.

White S, Feiner S. SiteLens: situated visualization techniques for urban site visits. Proceedings of the ACM CHI. Boston, MA, USA. 2009: 1117-1120.

Goose S, Güven S, Zhang S, Sudarsky S, Navab N. PARIS: Fusing Vision-based Location Tracking with Standards-based 3D Visualization and Speech Interaction on a PDA. Proceedings of IEEE DMS 2004 International Conference on Distributed Multimedia Systems. San Francisco, CA. 2004: 75-80.

Elnahrawy E, Nath B. Cleaning and querying noisy sensors. 2nd ACM international conference on Wireless sensor networks and applications. San Diego. 2003: 15-18.

Bychkovskiy V, Megerian S, Estrin D, Potkonjak MA. Collaborative approach to in-place sensor calibration. 2nd International Conference on Information Processing in Sensor Networks (IPSN). Palo Alto, CA. 2003.

Keim DA, Kriegel HP. Issues in Visualizing Large Databases. International Conference on Visual Database Systems (VDB-3). Lausanne, Schweiz, März. in: Visual Database Systems, Chapman and Hall Ltd., 1995.

Fishkin KP, Jiang B, Philipose M, Roy S. I Sense a Disturbance in the Force: Unobtrusive Detection of Interactions with RFID-tagged Objects. In Ubicomp, IRS-TR-04-013 Intel Research Seattle tech memorandum. Tokyo, Japan. June, 2004: 1-17.

Deshpande A, Guestrin C, Madden S, Hellerstein J, Hong W. Model-Driven Data Acquisition in Sensor Networks. Proceedings of Conference on Very Large Data Bases (VLDB) Conference. Toronto, Canada. 2004; 30: 588-599.

Beatty JC, Ware C. Using colour dimensions to display data dimensions. Human Factors. 1988; 30(2): 127-142.

Keim DA. Information visualisation and visual data mining. IEEE Transaction on Visualisation and Computer Graphics. 2002; 7(1):100-107.

Paskin MA, Guestrin C, McFadden J. A robust architecture for distributed inference in sensor networks. The Fourth International Conference on Information Processing in Sensor Networks (IPSN). Los Angeles, CA. 2005: 1-8.

Beatty JC, Ware C. Using colour dimensions to display data dimensions. Human Factors. 1988; 30(2): 127-142.

MacAdam DL. Geodesic chromaticity diagram based on variance of colour matching by 14 normal observers. Applied Optics Journal. 1971,(10)4:1-7.

MacAdam DL. Visual sensitivities to colour differences in daylight. Journal of the Optical Society of America. 1942. (32)5: 247-274.

Dam AS, Forsberg DH, La-Viola LJJ, Simpson RM. Immersive VR for scientific visualization-a progress report. IEEE Computer Graphics and Applications. 2000; 20(6): 26- 52.

Sangole A, Knopf GK. Visualisation of randomly ordered numeric data sets using spherical self-organisng feature maps. Elsevier Journal of Computer and Graphics. 2003; 27(6): 963-976.

Jiawei H, Kamber M. Data Mining: concepts and techniques. Massachusetts: Morgan Kaufmann Publishers. 2001: 104-118.

Olufemi AF, Shahrizal M, Kari S. An algorithm for treating uncertainties in the visualization of pipeline sensors datasets. First Int’l Visual Informatics Conf (IVIC ’09). Kuala Lumpur, Malaysia. 2009: 561-572.

Azuma RT. A Survey of Augmented Reality. Presence: Teleoperators and Virtual Environments. 1997; (6)4: 355-385.




DOI: http://dx.doi.org/10.12928/telkomnika.v9i1.684

Article Metrics

Abstract view : 211 times
PDF - 185 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Universitas Ahmad Dahlan

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus, 9th Floor, LPPI Room
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120 ext. 4902, Fax: +62 274 564604

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

View TELKOMNIKA Stats