Improved Face Recognition Across Poses using Fusion of Probabilistic Latent Variable Models

Moh Edi Wibowo, Dian Tjondronegoro, Vinod Chandran, Reza Pulungan, Jazi Eko Istiyanto


Uncontrolled environments have often required face recognition systems to identify faces appearing in poses that are different from those of the enrolled samples. To address this problem, probabilistic latent variable models have been used to perform face recognition across poses. Although these models have demonstrated outstanding performance, it is not clear whether richer parameters always lead to performance improvement. This work investigates this issue by comparing performance of three probabilistic latent variable models, namely PLDA, TFA, and TPLDA, as well as the fusion of these classifiers on collections of video data. Experiments on the VidTIMIT+UMIST and the FERET datasets have shown that fusion of multiple classifiers improves face recognition across poses, given that the individual classifiers have similar performance. This proves that different probabilistic latent variable models learn statistical properties of the data that are complementary (not redundant). Furthermore, fusion across multiple images has also been shown to produce better perfomance than recogition using single still image.


face recognition, pose, classifier fusion, video, probabilistic latent variable

Full Text:



Article Metrics

Abstract view : 205 times
PDF - 243 times


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus, 9th Floor, LPPI Room
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120 ext. 4902, Fax: +62 274 564604