Semi-Supervised Keyphrase Extraction on Scientific Article using Fact-based Sentiment

Felix Christian Jonathan, Oscar Karnalim

Abstract


Most scientific publishers encourage authors to provide keyphrases on their published article. Hence, the need to automatize keyphrase extraction is increased. However, it is not a trivial task considering keyphrase characteristics may overlap with the non-keyphrase’s. To date, the accuracy of automatic keyphrase extraction approaches is still considerably low. In response to such gap, this paper proposes two contributions. First, a feature called fact-based sentiment is proposed. It is expected to strengthen keyphrase characteristics since, according to manual observation, most keyphrases are mentioned in neutral-to-positive sentiment. Second, a combination of supervised and unsupervised approach is proposed to take the benefits of both approaches. It will enable automatic hidden pattern detection while keeping candidate importance comparable to each other. According to evaluation, fact-based sentiment is quite effective for representing keyphraseness and semi-supervised approach is considerably effective to extract keyphrases from scientific articles.

Keywords


fact-based sentiment; semi-supervised approach; keyphrase extraction; scientific article; deep belief network

Full Text:

PDF


DOI: http://dx.doi.org/10.12928/telkomnika.v16i4.5473

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 Universitas Ahmad Dahlan

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus, 9th Floor, LPPI Room
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120 ext. 4902, Fax: +62 274 564604

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

View TELKOMNIKA Stats