Noise Removal in Microarray Images Using Variational Mode Decomposition Technique

G. Sai Chaitanya Kumar, Reddi Kiran Kumar, G. Apparao Naidu, J. Harikiran


Microarray technology allows the simultaneous monitoring of thousands of genes in parallel. Based on the gene expression measurements, microarray technology have proven powerful in gene expression profiling for discovering new types of diseases and for predicting the type of a disease. Enhancement, Gridding, Segmentation and Intensity extraction are important steps in microarray image analysis. This paper presents a noise removal method in microarray images based on Variational Mode Decomposition (VMD). VMD is a signal processing method which decomposes any input signal into discrete number of sub-signals (called Variational Mode Functions) with each mode chosen to be its band width in spectral domain. First the noisy image is processed using 2-D VMD to produce 2-D VMFs. Then Discrete Wavelet Transform (DWT) thresholding technique is applied to each VMF for denoising.  The denoised microarray image is reconstructed by the summation of VMFs.  This method is named as 2-D VMD and DWT thresholding method. The proposed method is compared with DWT thresholding and BEMD and DWT thresholding methods. The qualitative and quantitative analysis shows that 2-D VMD and DWT thresholding method produces better noise removal than other two methods.


empirical mode decomposition; variational mode decomposition; discrete wavelet transform; image enhancement; microarray images;

Full Text:



Article Metrics

Abstract view : 321 times
PDF - 166 times


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus, 9th Floor, LPPI Room
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120 ext. 4902, Fax: +62 274 564604