Modeling Text Independent Speaker Identification with Vector Quantization

Syeiva Nurul Desylvia, Agus Buono, Bib Paruhum Silalahi


Speaker identification is one of the most important technology nowadays. Many fields such as bioinformatics and security are using speaker identification. Also, almost all electronic devices are using this technology too. Based on number of text, speaker identification divided into text dependent and text independent. On many fields, text independent is mostly used because number of text is unlimited. So, text independent is generally more challenging than text dependent. In this research, speaker identification text independent with Indonesian speaker data was modelled with Vector Quantization (VQ). In this research VQ with K-Means initialization was used. K-Means clustering also was used to initialize mean and Hierarchical Agglomerative Clustering was used to identify K value for VQ. The best VQ accuracy was 59.67% when k was 5. According to the result, Indonesian language could be modelled by VQ. This research can be developed using optimization method for VQ parameters such as Genetic Algorithm or Particle Swarm Optimization.


speaker identification; text independent; vector quantization; Indonesian speaker; K-Means clustering;

Full Text:



Article Metrics

Abstract view : 232 times
PDF - 298 times


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus, 9th Floor, LPPI Room
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120 ext. 4902, Fax: +62 274 564604