A Novel Text Classification Method Using Comprehensive Feature Weight

Jian Liu, Weisheng Wu

Abstract


Currently, since the categorical distribution of short text corpus is not balanced, it is difficult to obtain accurate classification results for long text classification. To solve this problem, this paper proposes a novel method of short text classification using comprehensive feature weights. This method takes into account the situation of the samples in the positive and negative categories, as well as the category correlation of words, so as to improve the existing feature weight calculation method and obtain a new method of calculating the comprehensive feature weight. The experimental result shows that the proposed method is significantly higher than other feature-weight methods in the micro and macro average value, which shows that this method can greatly improve the accuracy and recall rate of short text classification.

Keywords


text classification; text categorization; comprehensive feature weight; feature selection

Full Text:

PDF


DOI: http://dx.doi.org/10.12928/telkomnika.v15i1.4303

Article Metrics

Abstract view : 195 times
PDF - 142 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Universitas Ahmad Dahlan

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus, 9th Floor, LPPI Room
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120 ext. 4902, Fax: +62 274 564604

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

View TELKOMNIKA Stats