HABCO: A Robust Agent on Hybrid Ant-Bee Colony Optimization

Abba Suganda Girsang, Chun-Wei Tsai, Chu-Sing Yang


The purpose of this research is to generate a robust agent by combining bee colony optimization (BCO) and ELU-Ants for solving traveling salesman problem (TSP), called HABCO. The robust agents, called ant-bees, firstly are grouped into three types scout, follower, recruiter at each stages. Then, the bad agents are high probably discarded, while the good agents are high probably duplicated in earlier steps. This first two steps mimic BCO algorithm. However, constructing tours such as choosing nodes, and updating pheromone are built by ELU-Ants method.To evaluate the performance of the proposed algorithm, HABCO is performed on several benchmark datasets and compared to ACS and BCO. The experimental results show that HABCO achieves the better solution, either with or without 2opt.


Ant Colony Optimization; Bee Colony Optimization; Hybrid; Robust Agent; Traveling Salesman Problem

Full Text:


DOI: http://dx.doi.org/10.12928/telkomnika.v15i3.3656


  • There are currently no refbacks.

Copyright (c) 2017 Universitas Ahmad Dahlan

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
website: http://telkomnika.ee.uad.ac.id
online system: http://journal.uad.ac.id/index.php/TELKOMNIKA
Phone: +62 (274) 563515, 511830, 379418, 371120 ext: 3208
Fax    : +62 (274) 564604