An Improved Artificial Bee Colony Algorithm for Staged Search

Shoulin Yin, Jie Liu, Lin Teng

Abstract


Artificial Bee Colony(ABC) or its improved algorithms used in solving high dimensional complex function optimization issues has some disadvantages, such as lower convergence, lower solution precision, lots of control parameters of improved algorithms, easy to fall into a local optimum solution. In this letter, we propose an improved ABC of staged search. This new algorithm designs staged employed bee search strategy which makes that employed bee has different search characters in different stages. That reduces probability of falling into local extreme value. It defines the escape radius which can guide precocious individual to jump local extreme value and avoid the blindness of flight behavior. Meanwhile, we adopt initialization strategy combining uniform distribution and backward learning to prompt initial solution with uniform distribution and better quality. Finally, we make simulation experiments for eight typical high dimensional complex functions. Results show that the improved algorithm has a higher solution precision and faster convergence rate which is more suitable for solving high dimensional complex functions.


Keywords


fuzzy logic;artificial intellegence

Full Text:

PDF


DOI: http://dx.doi.org/10.12928/telkomnika.v14i3.3609

Article Metrics

Abstract view : 0 times
PDF - 0 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus, 9th Floor, LPPI Room
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120 ext. 4902, Fax: +62 274 564604

View TELKOMNIKA Stats