Comparative Analysis of Spatial Decision Tree Algorithms for Burned Area of Peatland in Rokan Hilir Riau

Putri Thariqa, Imas Sukaesih Sitanggang, Lailan Syaufina


 Over one-year period (March 2013 – March 2014), 58 percent of all detected hotspots in Indonesia are found in Riau Province. According to the data, Rokan Hilir shared the greatest number of hotspots, about 75% hotspots alert occur in peatland areas. This study applied spatial decision tree algorithms to classify classes before burned, burned, and after burned from remote sensed data of peatland area in Kubu and Pasir Limau Kapas subdistrict, Rokan Hilir, Riau. The decision tree algorithm based on spatial autocorrelation is applied by involving Neigborhood Split Autocorrelation Ratio (NSAR) to the information gain of CART algorithm. This spatial decision tree classification method is compared to the conventional decision tree algorithms, namely, Classification and Regression Trees (CART),  C5.0, and C4.5 algorithm. The experimental results showed that the C5.0 algorithm generate the most accurate classifier with the accuracy of  99.79%. The implementation of spatial decision tree algorithm succesfuly improve the accuracy of CART algorithm.


classification; decision tree; peatland; spatial autocorrelation;

Full Text:



Balai Besar Penelitian dan Pengembangan. Peta Lahan Gambut Indonesia. Kementrian Pertanian. 2011.

Sizer N, Liech A, Minnemeyer S, Higgins M, Stolle F. Mencegah kebakaran hutan di Indonesia: fokus pada provinsi Riau, lahan gambut, serta pembakaran ilegal. 2014.

Adinugroho WC, Suryadiputra INN, Saharjo BH, Siboro L. Panduan Pengendalian Kebakaran Hutan dan Lahan Gambut. Proyek Climate Change, Forest and Peatlands in Indonesia. Bogor: Wetlands International – IP. 2005.

BPK RI (Badan Pemeriksa Keuangan Republik Indonesia). 2008. Hasil Pemeriksaan atas Kegiatan Pengendalian Kebakaran Hutan dan Lahan di Provinsi Riau. Auditorat utama keuangan negara. Report Number: IV i-iii. 2008.

Hadi M. Pemodelan spasial kerawanan kebakaran di lahan gambut: studi kasus kabupaten Bengkalis, provinsi Riau. Undergraduate Thesis. Bogor: Institut Pertanian Bogor; 2006.

Sharma R, Ghosh A, Joshi PK. Decision tree approach for classification of remotely sensed satellite data using open source support. Thesis. India: TERI University New Delhi; 2013.

Li X, Claramunt C. A apatial entropy-based decision tree for classification of geographical information. IEE Transaction in GIS. 2006; 10(3): 451-467.

Jiang Z, Shekhar S, Mohan P, Knight J, Corcoran J. Learning spatial decision tree for geographical classification: a summary of results. 20th International Conference Advancec in Geographic Information Systems. New York. 2012; 12: 390-393.

Sitanggang I.S, R. Yaakob, N. Mustapha and A.N. Ainuddin. Classification Model for Hotspot Occurrences using Spatial Decision Tree Algorithm. Journal of Computer Science. 2013; 9: 244-251.

Wagtendonk JW, Root RR, Key CH. Comparison of AVIRIS and Landsat ETM+ detection capabilities for burn severity. Remote Sensing of Environment. 2004; 92: 397−408.

Breiman L, Friedman JH, Olshen RA, Stone JC. Classification and Regression Trees. New York: Chapman and Hall/CRC. 1984.

PATIL N, LATHI R, DAN CHITRE V. Comparison of C5.0 & CART classification algorithms using pruning technique. International Journal of Enginering Research and Technology (IJERT). 2012.

Han J, Kamber M, Pei J. 2012. Data Mining Concept and Technique. United State: Elsevier Inc. 2012.

Su J, Zhang H. A fast decision tree learning algorithm. Proceedings of 21st national conference on Artificial Intelegence. 2006; 1: 500-505.

Tan PN, Steinbach M, Kumar V. 2005. Introduction to Data Mining. Boston: Pearson Addison Wesley. 2005.


Article Metrics

Abstract view : 136 times
PDF - 129 times


  • There are currently no refbacks.

Copyright (c) 2016 Universitas Ahmad Dahlan

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus, 9th Floor, LPPI Room
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120 ext. 4902, Fax: +62 274 564604

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.