Switch Configuration Effect on Stray Capacitance in Electrical Capacitance Volume Tomography Hardware

Arba’i Yusuf, Harry Sudibyo S, Dodi Sudiana, Agus Santoso Tamsir, Imamul Muttakin, Wahyu Widada, Warsito P. Taruno

Abstract


Electrical capacitance volume tomography (ECVT) system uses six switches in one channel with configuration resembling “T” letter, so it is called “T-switch”. The working scheme of the switch can be explained in four different modes of operation, i.e. excitation mode, detection mode, ground mode, and floating mode. This research describes the effect of switch configuration to stray capacitance in ECVT hardware. Stray capacitance introduces parasitic signal from other sources; one of them is signal from another electrode at floating mode when the signal is still flowing to detection circuit. One channel, two channels, three channels, so on until thirty-two channels are connected to single detection circuit sequentially to investigate the effect of stray capacitance. Both simulation and experiment show the stray capacitance increases along with addition of channel corresponds to 0.046pF for each channel.

Keywords


Stray capacitance, T-switch, ECVT, C-V circuit

Full Text:

PDF

References


Yang W Q. Design of electrical capacitance tomography sensors. J. Meas. Sci. Technol. 2010; 21: 1-13.

Yusuf A, Widada W, Taruno W P. Design of capacitance measurement circuit for data acquisition system ECVT. Proceedings of the International Conference on Information Technology and Electrical Engineering (ICITEE). Yogyakarta. 2013: 460–464.

Taruno W P, Baidillah M R, Sulaiman R I, Ihsan M F, Fatmi S E, Muhtadi A H, Haryanto F, Aljohani M. 4D brain activity scanner using Electrical Capacitance Volume Tomography (ECVT). Proceedings of the IEEE 10th International Symposium on Biomedical Imaging (ISBI). San Fransisco. 2013: 1006–1009.

Wang F, Marashdeh Q M, Fan L S, Warsito W. Electrical Capacitance Volume Tomography: Design and Applications. Open access sensor journal. 2010; 10: 1890-1917.

Marashdeh Q M, Teixeira F L, Fan L S. Adaptive Electrical Capacitance Volume Tomography. Journal of IEEE Sensor, 2014; 14(4): 1253-1259.

Muttakin I, Yusuf A, Rohmadi, Widada W, Taruno W P. Design and Simulation of Quadrature Phase Detection in Electrical Capacitance Volume Tomography. TELKOMNIKA Indonesian Journal of Electrical Engineering. 2015; 13(1): 55-64.

Jiang P, Fan S, Xiong T, Huang H. Investigation on the Sensitivity Distribution in Electrical Capacitance Tomography System. TELKOMNIKA Indonesian Journal of Electrical Engineering. 2013; 11(12): 7088-7093.

W Q Yang. Hardware Design of Electrical Capacitance Tomography Systems. J. Meas. Sci. Technol. 1996; 7: 225–232.

Sun J, Yang W Q. Fringe effect of electrical capacitance and resistance tomography sensors. J. Meas. Sci. Technol. 2013; 24: 1-15.

Heerens, Willem Chr. Application of capacitance techniques in sensor design. J. Phys. E: Sci. Instrum. 1986; 19: 897-906.

Gamio J C, Yang W Q, Stott A L. Analysis of Non-Ideal Characteristics of an AC-Based Capacitance Transducer for Tomography. Proceedings of the 2nd World Congress on Industrial Process Tomography (WCIPT2). Hannover. 2001: 595-602.

Byars M. An input multiplexer for electrical capacitance tomography. Proceedings of the 7th World Congress on Industrial Process Tomography (WCIPT7). Krakow. 2013: 176-183.

Chondronasios A, Yang W Q, Nguyen V T. Impedance Analyzer Based Tomography System. Proceedings of the 2nd World Congress on Industrial Process Tomography (WCIPT2). Hannover. 2001: 573-579.

DG469/470 Data Sheet Book. Vishay Siliconix. Document Number: 71470 S-72541-Rev. C. 2007.

Yusuf A, Muttakin I, Widada W, Taruno W P. Analysis of Single Excitation Signal for High Speed ECVT Data Acquisition System. Proceedings of the International Conference on Information Technology and Electrical Engineering (ICITEE). Yogyakarta. 2014: 360–365.

Yusuf A, Muttakin I, Rohmadi, Rudin A, Widada W, Taruno W P. Single Signal Conditioning Multi Electrode for ECVT Data Acquisition System. Proceedings of the TENCON. Bangkok. 2014: 1-6.

Wei Z. The Electromagnetic Interference Model Analysis of the Power Switching Devices. TELKOMNIKA Indonesian Journal of Electrical Engineering. 2013; 11(1): 167-172.

Qiang C, Ning C, Shuang L Z. Grounding Effect on Common Mode Interference of Underground Inverter. TELKOMNIKA Indonesian Journal of Electrical Engineering. 2013;11(9): 5187-5194.




DOI: http://dx.doi.org/10.12928/telkomnika.v14i2.3328

Article Metrics

Abstract view : 305 times
PDF - 199 times

Refbacks



Copyright (c) 2019 Universitas Ahmad Dahlan

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus, 9th Floor, LPPI Room
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120 ext. 4902, Fax: +62 274 564604

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

View TELKOMNIKA Stats