Quadrotor Path Planning Based on Modified Fuzzy Cell Decomposition Algorithm

Iswanto Iswanto, Oyas Wahyunggoro, Adha Imam Cahyadi


The purpose of this paper is to present an algorithm to determine the shortest path for quadrotor to be able to navigate in an unknown area. The problem in robot navigation is that a robot has incapability of finding the shortest path while moving to the goal position and avoiding obstacles. Hence, a modification of several algorithms are proposed to enable the robot to reach the goal position through the shortest path. The algorithms used are fuzzy logic and cell decomposition algorithms, in which the fuzzy algorithm which is an artificial intelligence algorithm is used for robot path planning and cell decomposition algorithm is used to create a map for the robot path, but the merger of these two algorithms is still incapable of finding the shortest distance. Therefore, this paper describes a modification of the both algorithms by adding potential field algorithm that is used to provide weight values on the map in order for the quadrotor to move to its goal position and find the shortest path. The modification of the algorithms have shown that quadrotor is able to avoid various obstacles and find the shortest path so that the time required to get to the goal position is more rapid.


Cell decomposition; Quadrotor; Fuzzy; Shortest Path; Potential Field Modified

Full Text:


DOI: http://dx.doi.org/10.12928/telkomnika.v14i2.2989

Article Metrics

Abstract view : 524 times
PDF - 363 times


  • There are currently no refbacks.

Copyright (c) 2019 Universitas Ahmad Dahlan

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus, 9th Floor, LPPI Room
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120 ext. 4902, Fax: +62 274 564604