Saron Music Transcription Based on Rhythmic Information using HMM on Gamelan Orchestra

Yoyon K Suprapto, Yosefine Triwidyastuti

Abstract


Nowadays, eastern music exploration is needed to raise his popularity that has been abandoned by the people, especially the younger generation. Onset detection in Gamelan music signals are needed to help beginners follow the beats and the notation. We propose a Hidden Markov Model (HMM) method for detecting the onset of each event in the saron sound. F-measure of average the onset detection was analyzed to generate notations. The experiment demonstrates 97.83% F-measure of music transcription. 


Full Text:

PDF


DOI: http://dx.doi.org/10.12928/telkomnika.v13i1.295

Article Metrics

Abstract view : 230 times
PDF - 269 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Universitas Ahmad Dahlan

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus, 9th Floor, LPPI Room
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120 ext. 4902, Fax: +62 274 564604

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

View TELKOMNIKA Stats