Fuzzy C-Means Clustering Based on Improved Marked Watershed Transformation

Cuijie Zhao, Hongdong Zhao, Wei Yao

Abstract


Currently, the fuzzy c-means algorithm plays a certain role in remote sensing image classification. However, it is easy to fall into local optimal solution, which leads to poor classification. In order to improve the accuracy of classification, this paper, based on the improved marked watershed segmentation, puts forward a fuzzy c-means clustering optimization algorithm. Because the watershed segmentation and fuzzy c-means clustering are sensitive to the noise of the image, this paper uses the adaptive median filtering algorithm to eliminate the noise information. During this process, the classification numbers and initial cluster centers of fuzzy c-means are determined by the result of the fuzzy similar relation clustering. Through a series of comparative simulation experiments, the results show that the method proposed in this paper is more accurate than the ISODATA method, and it is a feasible training method.


Full Text:

PDF


DOI: http://dx.doi.org/10.12928/telkomnika.v14i3.2757

Article Metrics

Abstract view : 197 times
PDF - 246 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Universitas Ahmad Dahlan

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus, 9th Floor, LPPI Room
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120 ext. 4902, Fax: +62 274 564604

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

View TELKOMNIKA Stats