Application of Artificial Fish Swarm Algorithm in Radial Basis Function Neural Network

Yuhong Zhou, Jiguang Duan, Limin Shao


Neural network is one of the branches with the most active research, development and application in computational intelligence and machine study. Radial basis function neural network (RBFNN) has achieved some success in more than one application field, especially in pattern recognition and functional approximation. Due to its simple structure, fast training speed and excellent generalization ability, it has been widely used. Artificial fish swarm algorithm (AFSA) is a new swarm intelligent optimization algorithm derived from the study on the preying behavior of fish swarm. This algorithm is not sensitive to the initial value and the parameter selection, but strong in robustness and simple and easy to realize and it also has parallel processing capability and global searching ability. This paper mainly researches the weight and threshold of AFSA in optimizing RBFNN. The simulation experiment proves that AFSA-RBFNN is significantly advantageous in global optimization capability and that it has outstanding global optimization ability and stability.

Full Text:



Article Metrics

Abstract view : 50 times
PDF - 109 times


  • There are currently no refbacks.

Copyright (c) 2016 Universitas Ahmad Dahlan

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus, 9th Floor, LPPI Room
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120 ext. 4902, Fax: +62 274 564604

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.