An adaptive IoT architecture using combination of concept-drift and dynamic software product line engineering

I Made Murwantara, Pujianto Yugopuspito


Internet of things (IoT) architecture needs to adapt autonomously to the environment and operational to maintain their supreme services. One common problem in the IoT architecture is to manage the reliability of data services, such as sensors’ data, that only sending data to the collector via gateway. If there is a disruption of services, then it is not easy to manage the system reliability. To this, an adaptive environment which is based on software reconfiguration creates a great challenge to provide better services. In this work, the software product line engineering (SPLE) reconfigures the edge devices via rules and software architecture. To identify disruption of data services which can be detected based on anomaly and truncated data. Our work makes use of concept drift to provide a recommendation to the system manager. This is important to avoid misconfiguration in the system We demonstrate our method using an open-source internet of things portal system that integrated to a cluster of sensors which is attached to specific gateway before the data are collected into a cloud storage for further processes. In identifying drifting data, the adaptive sliding window (ADWIN) method outperforms the Page-Hinkley (PH) with more selective identification and sensitive reading.


adaptive; concept drift; internet of things; software architecture; software product line;

Full Text:



Article Metrics

Abstract view : 0 times
PDF - 0 times


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120
Fax: +62 274 564604