Applications of Improved Ant Colony Optimization Clustering Algorithm in Image Segmentation

Junhui Zhou, Defa Hu

Abstract


When expressing the data feature extraction of the interesting objectives, image segmentation is to transform the data set of the features of the original image into more tight and general data set. This paper explores the image segmentation technology based on ant colony optimization clustering algorithm and proposes an improved ant colony clustering algorithm (ACCA). It improves and analyzes the computational formula of the similarity function and improves parameter selection and setting by setting ant clustering rules. Through this algorithm, it can not only accelerate the clustering speed, but it can also have a better clustering partitioning result. The experimental result shows that the method of this paper is better than the original OTSU image segmentation method in accuracy, rapidity and stability.


Full Text:

PDF


DOI: http://dx.doi.org/10.12928/telkomnika.v13i3.1803

Article Metrics

Abstract view : 204 times
PDF - 249 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Universitas Ahmad Dahlan

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus, 9th Floor, LPPI Room
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120 ext. 4902, Fax: +62 274 564604

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

View TELKOMNIKA Stats