Analysis of hybrid non-linear autoregressive neural network and local smoothing technique for bandwidth slice forecast

Mohamed Khalafalla Hassan, Sharifah H. S. Ariffin, Sharifah Kamilah Syed- Yusof, N. Effiyana Ghazali, Mohamed EA Kanona

Abstract


The demand for high steady state network traffic utilization is growing exponentially. Therefore, traffic forecasting has become essential for powering greedy application and services such as the internet of things (IoT) and Big data for 5G networks for better resource planning, allocation, and optimization. The accuracy of forecasting modeling has become crucial for fundamental network operations such as routing management, congestion management, and to guarantee quality of service overall. In this paper, a hybrid network forecast model was analyzed; the model combines a non-linear auto regressive neural network (NARNN) and various smoothing techniques, namely, local regression (LOESS), moving average, locally weighted scatterplot smoothing (LOWESS), the Sgolay filter, Robyn loess (RLOESS), and robust locally weighted scatterplot smoothing (RLOWESS). The effects of applying smoothing techniques with varied smoothing windows were shown and the performance of the hybrid NARNN and smoothing techniques discussed. The results show that the hybrid model can effectively be used to enhance forecasting performance in terms of forecasting accuracy, with the assistance of the smoothing techniques, which minimized data losses. In this work, root mean square error (RMSE) is used as performance measures and the results were verified via statistical significance tests.

Keywords


autoregressive neural network; bandwidth slice; forecast; local smoothing;

Full Text:

PDF


DOI: http://dx.doi.org/10.12928/telkomnika.v19i4.17024

Article Metrics

Abstract view : 0 times
PDF - 0 times

Refbacks



Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120
Fax: +62 274 564604

View TELKOMNIKA Stats