An improved swarm intelligence algorithms-based NL-FOPID controller for a trajectory tracking of underwater vehicles

Mustafa Wassef Hasan, Nizar Hadi Abbas


This paper presents a nonlinear fractional order-PID (NL-FOPID) for autonomous underwater vehicle (AUV) to solve the path tracking problem under the unknown disturbances (model uncertainty or external disturbances). The considered controller schemes are tuned by two improved swarm intelligence optimization algorithms, the first on is the hybrid grey wolf optimization with simulated annealing (HGWO-SA) algorithm and an improved whale optimization algorithm (IWOA). The developed algorithms are assessed using a set of benchmark function (unimodal, multimodal, and fixed dimension multimodal functions) to guarantee the effectiveness of both proposed swarm algorithms. The HGWO-SA algorithm is used as a tuning method for the AUV system controlled by NL-FOPID scheme, and the IWOA is used as a tuning algorithm to obtain the PID controller’s parameters. The evaluation results show that the HGWO-SA algorithm improved the minimal point of the tested benchmark functions by 1-200 order, while the IWOA improved the minimum point by (1-50) order. Finally, the obtained simulation results from the system operated with NL-FOPID shows the competence in terms of the path tracking by 1-15% as compared to the PID method.


Improved GWOA; Improved WOA; Nonlinear-FOPID; PID controller; Swarm intelligence algorithm; Underwater vehicles;


Article Metrics

Abstract view : 0 times


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus, 9th Floor, LPPI Room
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120 ext. 4902, Fax: +62 274 564604