Early detection of breast cancer using mammography images and software engineering process

Muayad Sadik Croock, Saja Dhyaa Khuder, Ayad Esho Korial, Sahar Salman Mahmood


The breast cancer has affected a wide region of women as a particular case. Therefore, different researchers have focused on the early detection of this disease to overcome it in efficient way. In this paper, an early breast cancer detection system has been proposed based on mammography images. The proposed system adopts deep-learning technique to increase the accuracy of detection. The convolutional neural network (CNN) model is considered for preparing the datasets of training and test. It is important to note that the software engineering process model has been adopted in constructing the proposed algorithm. This is to increase the reliably, flexibility and extendibility of the system. The user interfaces of the system are designed as a website used at country side general purpose (GP) health centers for early detection to the disease under lacking in specialist medical staff. The obtained results show the efficiency of the proposed system in terms of accuracy up to more than 90% and decrease the efforts of medical staff as well as helping the patients. As a conclusion, the proposed system can help patients by early detecting the breast cancer at far places from hospital and referring them to nearest specialist center.


breast cancer; deep-learning; software engineering; pattern recognition; website design;

Full Text:


DOI: http://dx.doi.org/10.12928/telkomnika.v18i4.14718

Article Metrics

Abstract view : 0 times
PDF - 0 times


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus, 9th Floor, LPPI Room
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120 ext. 4902, Fax: +62 274 564604