Research on Beef Skeletal Maturity Determination Based on Shape Description and Neural Network

Xiangyan Meng, Yumiao Ren, Haixian Pan

Abstract


Physiological maturity is an important indicator for beef quality. In traditional method, the maturity grade is determined by subjectively evaluating the degree of cartilage ossification at the tips of the dorsal spine of the thoracic vertebrae. This paper uses the computer vision to replace the artificial method for extracting object (cartilage and bone) regions. Hu invariant moments of object region were calculated as the regional shape characteristic parameters. A trained Hopfield neural network model was used for recognizing cartilage and bone area in thoracic vertebrae image based on minimum Euclidean distance. The result showed that the accuracy of network recognition for cartilage and bone region was 92.75% and 87.68%, respectively. For automatically maturity prediction, the accuracy of prediction was 86%. Algorithm proposed in this paper proved the image description and neural network modeling was an effective method for extracting image feature regions.


Full Text:

PDF


DOI: http://dx.doi.org/10.12928/telkomnika.v13i2.1468

Article Metrics

Abstract view : 120 times
PDF - 111 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2015 Universitas Ahmad Dahlan

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus, 9th Floor, LPPI Room
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120 ext. 4902, Fax: +62 274 564604

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

View TELKOMNIKA Stats