Image Denoising Based on Artificial Bee Colony and BP Neural Network

Junping Wang, Dapeng Zhang


Image is often subject to noise pollution during the process of collection, acquisition and transmission, noise is a major factor affecting the image quality, which has greatly impeded people from extracting information from the image. The purpose of image denoising is to restore the original image without noise from the noise image, and at the same time maintain the detailed information of the image as much as possible. This paper, by combining artificial bee colony algorithm and BP neural network, proposes the image denoising method based on artificial bee colony and BP neural network (ABC-BPNN), ABC-BPNN adopts the “double circulation” structure during the training process, after specifying the expected convergence speed and precision, it can adjust the rules according to the structure, automatically adjusts the number of neurons, while the weight of the neurons and relevant parameters are determined through bee colony optimization. The simulation result shows that the algorithm proposed in this paper can maintain the image edges and other important features while removing noise, so as to obtain better denoising effect.

Full Text:



Article Metrics

Abstract view : 151 times
PDF - 152 times


  • There are currently no refbacks.

Copyright (c) 2015 Universitas Ahmad Dahlan

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus, 9th Floor, LPPI Room
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120 ext. 4902, Fax: +62 274 564604

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.