Rice seed image classification based on HOG descriptor with missing values imputation

Huy Nguyen-Quoc, Vinh Truong Hoang


Rice is a primary source of food consumed by almost half of world population. Rice quality mainly depends on the purity of the rice seed. In order to ensure the purity of rice variety, the recognition process is an essential stage. In this paper, we firstly propose to use histogram of oriented gradient (HOG) descriptor to characterize rice seed images. Since the size of image is totally random and the features extracted by HOG can not be used directly by classifier due to the different dimensions. We apply several imputation methods to fill the missing data for HOG descriptor. The experiment is applied on the VNRICE benchmark dataset to evaluate the proposed approach.


HOG descriptor; KNN imputation; linear interpolation; missing value imputation; rice seed image classification; zero imputation;

Full Text:


DOI: http://dx.doi.org/10.12928/telkomnika.v18i4.14069

Article Metrics

Abstract view : 0 times
PDF - 0 times


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus, 9th Floor, LPPI Room
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120 ext. 4902, Fax: +62 274 564604