Approximation of regression-based fault minimization for network traffic

Chanintorn Jittawiriyanukoon


This research associates three distinct approaches for computer network traffic prediction. They are the traditional stochastic gradient descent (SGD) using a few random samplings instead of the complete dataset for each iterative calculation, the gradient descent algorithm (GDA) which is a well-known optimization approach in Deep Learning, and the proposed method. The network traffic is computed from the traffic load (data and multimedia) of the computer network nodes via the Internet. It is apparent that the SGD is a modest iteration but can conclude suboptimal solutions. The GDA is a complicated one, can function more accurate than the SGD but difficult to manipulate parameters, such as the learning rate, the dataset granularity, and the loss function. Network traffic estimation helps improve performance and lower costs for various applications, such as an adaptive rate control, load balancing, the quality of service (QoS), fair bandwidth allocation, and anomaly detection. The proposed method confirms optimal values out of parameters using simulation to compute the minimum figure of specified loss function in each iteration.


approximation; deep learning; error minimization; network traffic; regression-based prediction;

Full Text:



Article Metrics

Abstract view : 0 times
PDF - 0 times


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus, 9th Floor, LPPI Room
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120 ext. 4902, Fax: +62 274 564604