Electronics system thermal management optimization using finite element and nelder-mead method

Nurul Kausar Ab Majid, Fatimah Sham Ismail


The demand for high-performance, smaller-sized, and multi-functional electronics component poses a great challenge to the thermal management issues in a printed circuit board (PCB) design. Moreover, this thermal problem can affect the lifespan, performance, and the reliability of the electronic system.  This project presents the simulation of an optimal thermal distribution for various samples of electronics components arrangement on PCB. The objectives are to find the optimum components arrangement with minimal heat dissipation and cover small PCB area. Nelder-Mead Optimization (NMO) with Finite Element method has been used to solve these multi-objective problems. The results show that with the proper arrangement of electronics components, the area of PCB has been reduced by 26% while the temperature of components is able to reduce up to 40%. Therefore, this study significantly benefits for the case of thermal management and performance improvement onto the electronic product and system.


finite element method; nelder-mead method; optimization; thermal distribution;

DOI: http://dx.doi.org/10.12928/telkomnika.v17i5.12796

Article Metrics

Abstract view : 11 times


  • There are currently no refbacks.

Copyright (c) 2019 Universitas Ahmad Dahlan

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus, 9th Floor, LPPI Room
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120 ext. 4902, Fax: +62 274 564604

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.