Regression model focused on query for multi documents summarization based on significance of the sentence position

Aris Fanani, Yuniar Farida, Putra Prima Arhandi, M. Mahaputra Hidayat, Abdul Muhid, Billy Montolalu

Abstract


Document summarization is needed to get the information effectively and efficiently. One method used to obtain the document summarization by applying machine learning techniques. This paper proposes the application of regression models to query-focused multi-document summarization based on the significance of the sentence position. The method used is the Support Vector Regression (SVR) which estimates the weight of the sentence on a set of documents to be made as a summary based on sentence feature which has been defined previously. A series of evaluations performed on a data set of DUC 2005. From the test results obtained summary which has an average precision and recall values of 0.0580 and 0.0590 for measurements using ROUGE-2, ROUGE 0.0997 and 0.1019 for measurements using the proposed regression-SU4. Model can perform measurements of the significance of the position of the sentence in the document well.

Keywords


multi-document summarization; sentence position; support vector regresion;

Full Text:

PDF


DOI: http://dx.doi.org/10.12928/telkomnika.v17i6.12494

Article Metrics

Abstract view : 114 times
PDF - 31 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Universitas Ahmad Dahlan

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus, 9th Floor, LPPI Room
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120 ext. 4902, Fax: +62 274 564604

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

View TELKOMNIKA Stats