K-means and bayesian networks to determine building damage levels

Devni Prima Sari, Dedi Rosadi, Adhitya Ronnie Effendie, Danardono Danardono


Many troubles in life require decision-making with convoluted processes because they are caused by uncertainty about the process of relationships that appear in the system. This problem leads to the creation of a model called the Bayesian Network. Bayesian Network is a Bayesian supported development supported by computing advancements. The Bayesian network has also been developed in various fields. At this time, information can implement Bayesian Networks in determining the extent of damage to buildings using individual building data. In practice, there is mixed data which is a combination of continuous and discrete variables. Therefore, to simplify the study it is assumed that all variables are discrete in order to solve practical problems in the implementation of theory. Discretization method used is the K-Means clustering because the percentage of validity obtained by this method is greater than the binning method.


bayesian network; buildings damage; discretization; K-Means clustering; risk of earthquakes;

Full Text:


DOI: http://dx.doi.org/10.12928/telkomnika.v17i2.11756

Article Metrics

Abstract view : 127 times
PDF - 44 times


  • There are currently no refbacks.

Copyright (c) 2018 Universitas Ahmad Dahlan

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus, 9th Floor, LPPI Room
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120 ext. 4902, Fax: +62 274 564604

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.