Blood image analysis to detect malaria using filtering image edges and classificatio

Murk Hassan Memon, Tariq Jamil Saifullah Khanzada, Sheeraz Memon, Syed Raheel Hassan


Malaria is a most dangerous mosquito borne disease and its infection spread through the infected mosquito. It especially affects the pregnant females and Children less than 5 years age. Malarial species commonly occur in five different shapes, Therefore, to avoid this crucial disease the contemporary researchers have proposed image analysis based solutions to mitigate this death causing disease. In this work, we propose diagnosis algorithm for malaria which is implemented for testing and evaluation in Matlab. We use Filtering and classification along with median filter and SVM classifier. Our proposed method identifies the infected cells from rest of blood images. The Median filtering smoothing technique is used to remove the noise. The feature vectors have been proposed to find out the abnormalities in blood cells. Feature vectors include (Form factor, measurement of roundness, shape, count total number of red cells and parasites). Primary aim of this research is to diagnose malaria by finding out infected cells. However, many techniques and algorithm have been implemented in this field using image processing but accuracy is not up to the point. Our proposed algorithm got more efficient results along with high accuracy as compared to NCC and Fuzzy classifier used by the researchers recently.


feature vectors; median filter; RBC; RGB to gray scale; SVM classifier;

Full Text:



Article Metrics

Abstract view : 153 times
PDF - 167 times


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus, 9th Floor, LPPI Room
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120 ext. 4902, Fax: +62 274 564604