Anomaly Detection based on Control-flow Pattern of Parallel Business Processes

Hendra Darmawan, Riyanarto Sarno, Adhatus Solichah Ahmadiyah, Kelly Rossa Sungkono, Cahyaningtyas Sekar Wahyuni


The purpose of this paper was to discover an anomalous-free business process model from event logs. The process discovery was conducted using a graph database, specifically using Neo4J tool involving trace clustering and data filtering processes. We also developed a control-flow pattern to address, AND relation between activities named parallel business process. The result showed that the proposed method improved the precision value of the generated business process model from 0.64 to 0.81 compared to the existing algorithm. The better outcome is constructed by applying trace clustering and data filtering to remove the anomaly on the event log as well as discovering parallel (AND) relation between activities.


anomaly data filtering; control-flow pattern; graph database; process discovery;

Full Text:



Article Metrics

Abstract view : 291 times
PDF - 156 times


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus, 9th Floor, LPPI Room
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120 ext. 4902, Fax: +62 274 564604