Architecture design for a multi-sensor information fusion processor

Catherine Olivia Sereati, Arwin Datumaya Wahyudi Sumari, Trio Adiono, Adang Suwandi Ahmad


This paper discusses the design of the architecture of an information fusion processor. This processor emulates the way of human thinking, namely by drawing conclusions from the obtained collection of information. Architecture design for this processor is based on Knowledge Growing System (KGS) algorithm. KGS is a novelty in Artificial Intelligence field. Compared to other AI methods, KGS focuses on the observation of the process of the knowledge growth within human brain based on information received from the surrounding environment. By using KGS algorithm, this processor works by receiving inputs from a set of sensors and possible hypotheses obtained after the processing of the information. The processor generates a value which is called as Degree of Certainty (DoC), which show the most possible hypothesis among all alternative ones. The Processor Elements which are used to perform KGS algorithm is designed based on systolic array architecture. The design of this processor is realized with VHSIC Hardware Design Language (VHDL) and synthesized by using FPGA Quartus II.13.1. The results show that the data path which has been design is able to perform the mechanism of KGS computation.


artificial intelligence; information fusion; knowledge growing system; processor design; VHDL;

Full Text:



Article Metrics

Abstract view : 0 times
PDF - 0 times


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus, 9th Floor, LPPI Room
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120 ext. 4902, Fax: +62 274 564604