Inversion of Forest Leaf Area Index Based on Lidar Data

Zuowei Huang1,2, Yu Zou1
1School of Architecture and urban planning, Hunan University of Technology, Zhuzhou 412008, China
2School of Geosciences and Information-Physics, Central South University, Changsha 410083, China
*Corresponding author, e-mail: shiborentuichou@yeah.net

Abstract
Leaf area index (LAI) is an important parameter of vegetation ecosystems, which can reflect the growth status of vegetation, and its inversion result has important significance on forestry system. The inversion values of forest LAI exists a certain deviation using traditional method. The airborne LiDAR technology adopts a new type of aerial earth observation method and makes it possible to estimate forest structural parameters accurately. In order to improve the estimation precision of leaf area index (LAI) of forest canopies, an analyzing method based on Lidar data was proposed in this paper. Firstly it conducts data filtering and calibration techniques, then relevant flight experiment and LAI inversion principle are introduced. Finally the inversion model was optimized based on statistic analysis method. LAI map well reflected spatial distribution pattern of LAI in experiment fields. The coefficient of determination (R^2) and root mean square error (RMSE) were selected as testing indicators to analyze the inversion results. According to our validation data, the related result showed that the established model was workable, forest LAI estimation are very close to the field-measured, And inversion results with measured LAI has a good consistency, shows high accuracy ($R^2=0.8848$, $RMSE=0.2213$), which provides a new method to estimate LAI with large regional scale.

Keywords: Leaf area Index, Lidar data, discrete points cloud, laser penetrate index, statistic analysis

1. Introduction
Leaf area index (LAI) is defined as the single-side leaf area per unit ground area, which is an important biological parameter reflecting crop growing, providing structured quantitative information for describing the procedure of matter and energy exchange on plant canopy surface, It could represent the capability of vegetation for photosynthesis, respiration and transpiration, and become a primary parameter for characterized leaf density and vegetation structure, and plays a key role in the researches associated with vegetation biophysical activities. So it is a critical parameter in process-based models of vegetation canopy response to global environmental change, Many researchers have conducted studies on LAI trends of different ecosystems and their relationships to climate change at various methods. Although researchers have already worked out some retrieval algorithms of LAI, there is still a long way to go, for instance, retrieval accuracy and adaptability by single remote sensing sensor data. As a hotspot remote sensing technology, remote sensing has been proved great potential on LAI inversion. The traditional methods of forest parameters measurement have some limitations in large scale due to the direct measurement capability with high precision on the forest vertical structure.

Light Detection and Ranging (LiDAR) is an active remote sensing technology, which can determine the distance between the sensor and the target by emitting laser from sensors. It has been applied to forestry research in many fields. Lidar technology shows unsurpassed advantages in the measurement over these parameters. Two main methods which establish the relationships between LAI and satellite observed spectral canopy reflectance are widely used for LAI retrieval from remote sensing data, including vegetation index-based empirical regression method and physical model-based method. Lefsky, et al. (2001) pointed out that in spite of the laser radar being sample data, it will greatly enhance the forestry measurement by integrating other grid remote sensing data owing to the very high precision. At present,
combining Lidar data with optical, multi-angular and microwave remote sensing data is an effective inversion way of canopy height and biomass in regional scale [1-4].

2. Study Area and Data

2.1. Study Area

The study area is the Xinling district located near Shaoyang City, Hunan Province, 4.25 km from the city center, belongs to the low mountain hilly terrain, with a typical hilly landscape and a significant temperate continental monsoon climate, having high temperature and concentrated rainfall in summer. The altitude is about 260-550m. The frost-free period reaches 300-330d. The study area is about 5648 Ha, it mainly composed of artificial forest and secondary natural forest. Main vegetation includes red pine, Pinus sylvestris, Camellia oleifera, barley, and yellow pineapple, etc. Figure 1 is the research area and validation sample areas. The spatial distribution of the crown structure has important significance in forestry, it using ground-based light detection points cloud for crowns in the field.

![Figure 1. Location of research area and sampling sites](image)

2.2. Data Acquisition

The data was acquired on May 31, 2013; the laser scanner is ALS70, with laser wavelength of 1064 nm, and laser pulse length of 3.0 ns, and laser beam divergence of 0.3mrad. Point cloud data uses WGS84 coordinate system, and a universal transverse Mercator (UTM) projection. It can record three echo pulses: the first, the last echo pulse echo pulse and single echo pulse. The relative height of flying altitude was 850 m above the ground and the footprint diameter is about 0.28 m, which is small so that the pulse can easily get through some sparse farmland and completely reach the ground.

Method for LAI acquisition uses the Yao method. The DSM of laser point cloud in study area is get. According the forest growth, we chose the sample from the other fields with similar growth conditions, and then measured the leaf area by SunScan to determine LAI Each sample has precise GPS positioning data. SunScan does not wait for the special weather conditions and it can work properly in most light conditions. Hand-held terminal PDA is simple with large storage, which can meet the needs of large data measurement. Since the sensor using a wireless transmitting and receiving technology, it makes the measurement more convenient, quick access to the large area of forest region LAI. Wireless transmission range 250 m, the vegetation coverage of 100 to 200m, greatly improves the efficiency of forest LAI. The aircraft attitude maintenance was supported using GPS equipment of aircraft navigation, inertial measure unit (IMU) and global positioning system (GPS) of airborne laser radar. GPS synchronous observation of high precision dynamic dual-frequency GPS receiver, the sampling frequency is 2HZ. GPS base station within 10 km radius of the surface. The track amendment, the aircraft’s pitch, the control of roll and lateral roll were able to achieve a high precision [5-10].
3. Method
3.1. Data Processing

In this paper, both multiple echo and full waveform data are used. The base principle is shown in Figure 2. Figure (a) is multiple echo of point cloud. Figure (b) is full waveform diagram. Figure (c) is digital waveform diagrams. Relative to the discrete point cloud data, the waveform data can store all the echoes returned laser pulses, which play an increasingly important role in the later analysis. The system records three types of echo, first echo, last echo and single echo, with point density of 0.98 points per square meter. The full waveform data contains information about the scanning angle, time interval between launch wave and reflection wave. Raw data contains a large number of gross errors or irrelevant information, such as data produced by local terrain mutation, reflected signal resulted from flying birds or other moving objects, or other local empty formed by no echo. In the data pre-processing, the data process software provided by equipment supplier should use artificial interactive editing to ensure the accuracy of terrain model and vegetation model generated later. The GPS carried by aircraft and DGPS on the ground positioned in real time during the flight for unifying. Images are another data source that we can employ. It provides information about objects contours and layout, which will improve the visualization effects.

![Figure 2. The schematic diagram of multi-echo and full waveform](image)

Data processing flow is shown in Figure 3. Coordinate has been provided in UTM projection with an absolute accuracy of <0.7 m in the x and y directions, and <0.20 m in the z direction. The resolution along flight line is about 1.5m, the maximum resolution along scan line direction is about 0.07 m, the minimum distance between buildings is 2.5m, the minimum height difference between terrain points and object points is 3.5 m. Considering the design of the laser firing position, which is as high as the line of sight, the laser altimeter reduces measurement errors as well as ensures a high measurement accuracy of ±0.3 m within 300 m and an angle measurement accuracy of ±0.25. As we all known point cloud data contain some noises, noise is commonly isolated points, it is detrimental for the subsequent inversion, and it need to remove the noise points before processing. Noisy points can be divided into three categories according to their three-dimensional characteristics: isolated points are these points that no other point cloud points in their neighborhoods. Extreme high points, the LiDAR points far higher from the nearby rough surface, usually caused by reflections of birds, low altitude airships or planes. Extreme low points, which are obviously lower than their adjacent ground LiDAR points, are caused by multiple reflection of laser pulse or system errors. The existence of extreme low points can lead to significant errors when interpolating DEM or DSM. In order to effectively remove the noise points, this research adopts the Finite-element reasoning algorithm to deal with point cloud, Finite-element reasoning (FEA) is introduced to eliminate noise, which its basic
principle is that a complex object will be divided into several simple units. The three-dimensional structure of hexahedron is regarded as the basic finite unit.

![Figure 3. Data processing flow](image)

3.2. Theoretical Principle of LAI

Point cloud intensity is influenced by many factors, such as reflectance of the target, target-sensor distance, scanning zenith angle, and atmospheric condition. This research are completed in the same conditions, and the plane as the level flight, so that the parameters is the same, such as no change, According to Wagner (2006), the received energy can be specified by:

\[
E_r = \frac{E_t D_t^2 \rho}{4 \pi R^2 \beta_t} A_3 k_1 k_2
\]

where \(E_r\) and \(E_t\) are the received and transmitted laser energy respectively, \(R\) stands for the sensor-target distance, \(\beta_t\) stands for the laser-beam divergence, \(D_t\) stands for the diameter of the receiver aperture, \(\rho\) stands for the reflectance of the target surface, \(k_1\) and \(k_2\) stands for the system and atmospheric transmission factors, respectively, and \(A_3\) as the illuminated target area.

In order to evaluate the precision of leaf area index (LAI), reflectance data were collected with ASD at two sampling sites, vegetation indices (NDVI, SAVI, SR) were applied to regress against LAI, canopy reflectance were transformed with wavelet analysis, and extracted wavelet energy coefficient were applied in regression model for LAI estimation. Transforming the point cloud into grid, when there have multiple points, using the max value as the pixel-value. Then getting resolution DSM is 0.8 m. After extracting valid waveforms data, smoothing...
filtering was realized by using a gauss filter which width was the same as the laser pulse width. The background noises in the beginning and end of phase were estimated using the histogram method [11-15] and the features parameters (mean value and standard deviations) were also calculated. Then the waveform was fitted effectively by Levenberg Marquardt nonlinear method, and the wave peak position of the ground and forest canopy was determined by gauss wave decomposition.

The vertical structural information obtained by LiDAR data, which helps in removing the interferences of forest gaps and other non-forest pixels as well as in extracting the canopy subsets. In addition, training samples can be easily extracted at a certain tree height of different species in the spectrum space. Therefore, based on the canopy subsets as well as the combined spectral differential and curve matching techniques, an automatic extraction method of training samples is realized. DEM is generated using TIN interpolation method with the ground point data classified. Then, the elevation values of vegetation points are normalized by DEM to remove the terrain elevation, so that the height values of vegetation points are the heights relative to the ground. After gaining the ground points, it uses the GPS software to generate and interpolate the ground points into 1 m resolution DEM [16-20].

Generating the canopy height model (CHM) by DSM minus DEM. For a 5×5 window, if the central pixel is the minimum, let the pixel value equal to the average of the window. Furthermore, according to prior knowledge, if the CHM is less than 2.2 m, the points in the grid are the points. And then, we can get the Lidar points in the forestland. It divided the study area into 4×4 m grids, where there may be a number of (n) ground echoes, and the gap fraction (fgap) one grid then can be approximated by:

\[
f_{\text{gap}} = \frac{1}{n} \sum_{j=1}^{n} \frac{I_g \times R_{\text{g}}^4}{R_{\text{max}}^4}
\]

Where \(I_g\) and \(I_{\text{max}}\) represent the intensity, \(n\) is the count of points in one grid, \(I_g\) and \(R_g\) are the gap fraction, the intensity and the sensor-target distance of the j th ground echo, respectively. Through a TIN interpolation, and then an ortho-rectification of data was conducted to eliminate the image deformation caused by the terrain. For the same spatial resolution of 2 m, 20 points, which were located along the road or flat area, were using the TerraScan to extract the ground points in the corn field [21-22]. According to the longitude and latitude, the intensity and sensor-target distance \(R\) of every point can be gained. As usual, the points in the middle of the classification results can be considered as the pure pixels, considering the maximum likelihood classification’s accuracy and features. For the huge number of points, we choose the first one hundred points. The probability of photons directly reaching the ground represents canopy transmittance:

\[
T_0 = e^{-\lambda_0 \frac{G}{\mu}}
\]

where \(\lambda_0\) stands for Nilson parameter considering vegetation clumping effect, \(G\) is the mean projection of a unit of leaf area into the plane perpendicular to the incident laser direction, \(\mu\) is the cosine of the zenith angle. Canopy transmittance \(T_0\) equals to the gap fraction as follow:

\[
f_{\text{gap}} = e^{-\lambda_0 \frac{G}{\mu}}
\]

Where \(\mu\) can be calculated by the scanning angle. \(G\) can be inferred from the prior knowledge, Accordingly, \(\text{LAI}\) can be calculated as follow:

\[
\text{LAI} = -\frac{\ln(f_{\text{gap}})}{\lambda_0 G} \mu
\]
4. Result Validation and Analysis

4.1. Flight Experiment

The strip distribution of the experiment is shown in Figure 4. It composed of six routes, IFOV is 45 degrees. The flight ground speed was 150 km/h, and the weather was sunny with few clouds. The flying height of L1, L2, L3 and L4 about 2100 meters, with two groups of aviation, overlapping degree is 100%, laser-scanning frequency (58.6 HZ), pulse frequency (158 KHZ). Based on ICP calibration method, first check roll Angle, then check pitching Angle, at last check course Angle, MPIA is set as Enabled. The sensitive parameters in accordance with a certain step size values obtained canopy reflectance leaves under different circumstances, the establishment of LAI and canopy reflectance lookup table. The point density was about 0.98 points per square meter. The full waveform data contains information about the scanning angle, time interval between launch wave and reflection wave. In the study, the plots are selected based on the LiDAR data coverage. According to the methods above, four circular plots data were collected, a few forest variables were calculated based on the investigated data. Retrieve the fractional cover of forest by the grid. After data pre-processing the height and intensity information of one plot is showed in Figure 5.
4.2. Parameter Optimization for Inversion Model

For most of plants, the leaf area increases with the plant height during the vegetation growth. For different species and varieties of crops, the relationships of conversion between crop height, fraction of coverage and LAI was proposed by Zhang (1996). Data classification and extraction of vegetation and ground point are under different scales of a number of ground points and vegetation points. Finally calculate the laser radar penetration index and inversion calculation on LAI. The sampling data, LPI were calculated for each sample under various scales, LPI is laser penetrate index:

\[L = -\frac{1}{k} \ln(I) = -\frac{1}{k} \ln(LPI) \]

(6)

Where L stand for the leaf area index, I stands for the canopy light intensity, I0 is above the canopy light intensity, k is the extinction light coefficient, depending on the direction of the leaf inclination Angle and the beam of light, light beneath the canopy is available. LPI instead of I/I0, (1/LPI) containing the intercept of the regression analysis with the measured LAI, inversion model based on the statistic analysis of the feature variables.

The feature variables of LiDAR include: canopy height model (CHM), intensity, the mean height (Hmean), the maximum height (Hmax), the minimum height (Hmin), the percentile of the canopy height distributions (H25th, H50th, H90th) and LPI. In order to establish the optimal model of LiDAR-LAI prediction, it select a high correlation between LAI and LiDAR parameters, and extract the LiDAR vertical structure parameters of the same location. and the measured LAI values for correlation analysis, if the correlation coefficient absolute value is greater than 0.3, then select it as the input parameters, the Correlation of LiDAR metrics and field measured LAI results are shown in table1.

| Table 1. Correlation of LiDAR metrics and field measured LAI |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| LAI | LAI | H25th | H50th | Hmean | Hmax | Hmin | fgap |
| 1.00 | -0.16 | 1.00 | -0.23 | 0.13 | 0.23 | -0.24 | -0.36 |
| H25th | 0.15 | -0.26 | -0.25 | 0.17 | 0.62 | 0.15 | -0.34 |
| H50th | -0.06 | 1.00 | -0.26 | -0.05 | 0.25 | 0.09 | -0.23 |
| Hmean | 0.09 | 1.00 | 0.15 | 0.62 | 0.25 | 1.00 | -0.08 |
| Hmax | -0.34 | -0.14 | 0.09 | -0.23 | 0.13 | 0.45 | 1.00 |
| Hmin | -0.14 | -0.34 | -0.23 | -0.08 | 1.00 | 0.45 | 1.00 |
| fgap | -0.23 | 0.25 | 0.06 | -0.34 | -0.14 | 0.25 | 1.00 |
| LPI | -0.25 | 0.06 | -0.34 | -0.14 | 0.25 | 1.00 | 0.45 |
| intensity | -0.35 | -0.18 | -0.29 | 0.13 | 0.45 | 1.00 | |

According to the results of correlation analysis in table 1, then select the fgap ,intensity, LPI, H90th as input variables for LiDAR-LAI estimation model. By the prior knowledge, LPI is inversely proportional to LAI, The value is larger, the smaller the leaf area index, according to the penetration index Formula, vegetation canopy echo is large, forest canopy structure is complex, the smaller the LPI. LAI is larger, therefore the LPI is negatively correlated with LAI; the greater the of fgap vegetation, namely Coverage is lower, the smaller LAI; the intensity is larger Area, the larger LAI. The intensity of point cloud was positively related with LAI.

In the study, 15 samples was selected randomly from 30 the measured samples, as input data, the remaining 15 samples as validation data, taken the ground data as the dependent variable, the above four LiDAR parameters as variables, multiple regression model is established. Through regression analysis with the above four LiDAR parameters, the inversion model was constructed by the regression model is depicted as:

\[LAI = 5.34 + 4.34I - 0.05f_{gap} - 1.78LPI + 0.03H_{25th} \]

(7)
4.3. LAI Inversion Result Analysis

The main software: LiDAR_Pro, TerraScan, matlab2009a, Erdas Imagine9.2, VTK platform, VTK to finish the experiment in VC++ platform and combining the construction of visualization class library. It carries on the regression analysis and the measured LAI, calculate the value of correlation coefficient (R2) and root mean square error (RMSE). High R2 indicates the high correlation between variables and independent variables. RMSE between the true values and predicted values is also an indicator. The value is smaller, the better the effect of predication. This is a test on the effect of regression linear superposition. The study of correlation between forest height, LAI and coverage can provide a theoretical basis and reasonable physical and biological meanings for the space extrapolation of forests canopy height.

Through the above inversion method, the inversion map of LAI in the study area is shown in Figure 6, it can be seen that the inversion result of forest coverage was consistent with the vegetation distribution in the study area. Comparisons of LAI between those derived from Lidar and field measurements (Table 2), it is showed that the LAI of Lidar and filed data agree well, and only that the 3th plot has a relative large error. The retrieval error of fractional cover will transfer to LAI. Results show that based on airborne and spaceborne LiDAR data LAI inversion accuracy is higher than that of the corresponding optical remote sensing inversion accuracy.

![Figure 6. The inversion map of LAI in the study area](image)

Table 2. Comparisons of LAI between those derived from Lidar and field measurements

<table>
<thead>
<tr>
<th>Plots</th>
<th>Lidar results</th>
<th>Field measurements</th>
<th>Absolute error</th>
<th>Relative error/%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average</td>
<td>Standard deviation</td>
<td>Average</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>1</td>
<td>0.350</td>
<td>0.232</td>
<td>0.045</td>
<td>0.048</td>
</tr>
<tr>
<td>2</td>
<td>0.330</td>
<td>0.030</td>
<td>0.625</td>
<td>0.000</td>
</tr>
<tr>
<td>3</td>
<td>0.289</td>
<td>0.138</td>
<td>0.634</td>
<td>0.062</td>
</tr>
<tr>
<td>4</td>
<td>0.343</td>
<td>0.024</td>
<td>0.458</td>
<td>0.035</td>
</tr>
</tbody>
</table>

In order to evaluate the reliability of this inversion method, using leave-one-out cross-validation method, predicted LAI was evaluated by using 30 measured LAI data, it was showed that the determination coefficient is 0.878, the root mean square error is 0.208 towards measured value and predicted values (Figure 7), it found that the results of forest LAI joint inversion model was consistent with the distribution of forest type map. Hence, these results can...
be better applied to the quantitative inversion of other forest biophysics parameters. LiDAR data offer a new way to accurately estimate forest LAI. Especially, satellite borne LiDAR data open the possibility of global forest LAI estimation with high accuracy.

![Figure 7. The relationship of measured value and Predicted value](image)

5. Conclusion and Discussion

LAI is very often a critical parameter in process-based models of vegetation canopy response to global environmental change, for numerous studies of interaction of atmosphere and vegetation, rapid, reliable and objective estimations of LAI are essential. Therefore, this paper was applied to establish a model with simpleness, practicality and high accuracy based on the all structure of the ground component in order to realize the fast, efficient remote sensing estimation of vegetation leaf area index. High-precision the mixed-pixel clumping index is very important for the accuracy improvement of LAI product. Until now, there is no parameter to describe the clumping effect at pixel scale effectively. In mixed pixels, the clumping index is usually estimated with the dominated vegetation type without considering the heterogeneity inside the pixel although sometimes it can be neglected. This method may cause large uncertainty. For the reasons above, it is necessary and urgent to define MPCI and propose the calculation method. The algorithm for MPCI calculation proposed in this paper considers the influence of the mixed-pixel heterogeneity. In the further study, we will validate and compare our MPCI result and generate the product at a large scale. The products can be used for LAI correction and improve the accuracy. LiDAR is one of the most promising technologies in forestry, which shows potential for timely and accurate measurements of forest biophysical properties. Some studies show that the relationships between forest biophysical properties and airborne laser scanner data are different for the different geographical location, species composition, site quality, etc. In the case that remote sensing becoming more popular, the LiDAR technology has increasingly being used in the forestry as a new means of remote sensing. Many researchers have focused on LAI estimation using LiDAR data and explored the method of LAI retrieval based on LiDAR data. In the future, Lidar will have extensive applications for precision agriculture and other agricultural production.

Acknowledgements

This work is supported by Scientific Research Fund of Hunan Provincial Education Department (15C0384). The authors would like to thank the anonymous reviewers for their careful reading of this paper and for their helpful comments.
References

