Classification of Non-Functional Requirements Using Semantic-FSKNN Based ISO/IEC 9126

Denni Aldi Ramadhani¹, Siti Rochimah², Umi Laili Yuhana³

¹Informatics Department, Faculty of Computer Science, Dian Nuswantoro University
Imam Bonjol, Semarang 50131, Indonesia
²,³Informatics Department, Faculty of Information Technology, Institut Teknologi Sepuluh
Nopember, Surabaya 60111, Indonesia
*Corresponding author, email: denni.aldi@dsn.dinus.ac.id ¹; siti@its-sby.edu²;
yuhana@if.its.ac.id³

Abstract
Non-functional requirements is one of the important factors that play a role in the success of software development that is often overlooked by developers, so it cause adverse effects. In order to obtain the non-functional requirements, it requires an identification automation system of non-functional requirements. This research proposes an automation system of identification of non-functional requirements from the requirement sentence-based classification algorithms of FSKNN with the addition of semantic factors such as the term development by hipernim and measurement of semantic relatedness between the term and every category of quality aspects based ISO / IEC 9126. In the test, the dataset is 1342 sentences from six different datasets. The result of this research is that the Semantic-FSKNN method can reduce the value of hamming loss or error rate by 21.9%, and also raise the value of accuracy by 43.7%, and also the precision value amounted to 73.9% compared to FSKNN method without the addition of semantic factors in it.

Keywords: Non-Functional Requirements, Classification, Semantic-FSKNN, ISO/IEC 9126

Copyright © 2015 Universitas Ahmad Dahlan. All rights reserved.

1. Introduction
Knowing the non-functional requirements closely related to software quality aspects is an essential thing because the quality aspect of non-functional requirements is one of the factors that plays a role in the success of a system development. Industrial world, in practice, is also too focused on the functional requirements factors and often forgets the factor of non-functional requirements to achieve the design and development phase [1]. In fact, if the quality aspect of non-functional requirements is not taken into consideration and not known, it would cause harmful effects, both for the success of the software system development and stakeholders.

One case is the London Ambulance System (LAS), the LAS system failed in performance due to uncertainty and inconsistency in the process of non-functional requirements specification [2]. Another system failure is the health system of Electronic Health Record (EHR) that failed in performance due to the lack of quality aspects of usability [3]. Other effects also have an impact for stakeholders, as happened in the development of the US Army Intelligence Sharing System that the development cost up to $ 2.7 billion wasted because the system is considered useless because of problems in capacity factor and the quality factor of the performance and usability [4].

Some cases above are pictures showing that non-functional requirement is an important factor which must be known and identified first before the software development enters the advanced phase. However, identifying non-functional requirement is not an easy thing because of several factors such as the lack of standards in identifying the non-functional requirement, the non-functional requirement is often encountered incomplete and it is often hidden or mixed in the functional requirement sentences [5] [6], the requirement sentence written in natural language usually have ambiguity which would make it difficult to identify the aspects of quality of non-functional requirement contained in it [7]. Therefore, we need ways to be able to identify
aspects of the quality of non-functional requirement, one of which is by having the classification of the sentences of requirement written in the requirement document.

This research aims to design a system that can automatically classify non-functional requirement from various requirement documents. This system will have three main phases namely automation of training data labeling, measurement of semantic relatedness, and classification process comprising the steps of training and classification. The process of automation of training data labeling is done in order to save more time than if the labeling is done manually, this process is done by TF-IDF weighting with a search for the degree of similarity using the cosine measures done by Suharso and Rochimah [8]. The process of semantic relatedness measurement is done by using the method of HSO [9] [10] to get the semantic relationship between each class and each term that will be processed. While for the classification process, it uses FSKNN methods that have been introduced by Jiang et al [11] that there is a new variable addition in the training phase so that the value of semantic relatedness obtained in the previous process can be taken into consideration during the process of training. Classes is used for the process of classification is based on the international standard ISO/IEC9126.

There are many methods developed to do classification process both for documents in general and requirement documents to identify non-functional requirement of software, consisting of the formation of NFR Locator system whose classification uses KNN and makes use of the function of distance Levenshtein [12], Naïve Bayes with some developments [6] [13] [14], using SVM method with the renewal in feature selection phase [15], the usage of TF-IDF weighting and measurement of similarity degree of cosine measure [8]. Basically, the process of classification consists of single-label and multi-label, some method developments mentioned above are still limited in single-label, whereas in fact, there is a possibility that one option of requirement sentence in requirement document contains more than one aspect of non-functional requirement (multi-label) [7] [16]. The method development above, has also not considered a factor of semantic relationships between each category of non-functional requirement and term that are processed during the training, because in fact semantic factor can improve the classification result to be better [17] [18].

One research trying to perform multi-label classification of documents was done by Jung-Yi Jiang et al that proposed a method called Fuzzy Similarity based K-Nearest Neighbor (FSKNN) [11]. FSKNN method is proved to be better than other multi-label classification methods, but the FSKNN method has not taken into account the semantic factors in it. Therefore, this research will use the method FSKNN by adding semantic factor in the form of term enrichment in the training of database on combination correlation between hypernyms and synonyms based WordNet and semantic relatedness measurement between the term and the category of non-functional requirement which is a new factor given in this research.

2. Research Method

Overall, the design of the system are made based on the research by Jiang et al [11] are shown in Figure 1 with dark-colored part is a contribution in this research. Based on Figure 1 above, this research method consists of four main phases, namely: automation of training data labeling, semantic relatedness measurement, Semantic-FSKNN training phase consisting of training pattern grouping and calculation of prior probability and likelihoods value, and the last is Semantic-FSKNN classification phase.

2.1. Automation Labeling Training Data

On the phase of the automation labeling training data consists of four phases: preprocessing, term enrichment in the training data based on combination correlation between hypernyms and synonyms, the weighting of tf-idf, and similarity value measurement. All phases of automation labeling training data is based on research that has been done by Suharso and Rochimah [8]. Except in second phase is the first contribution of this research that is to enrich relevant term for training data using a combination pattern hypernym and synonyms as in Figure 2.
2.2. Semantic Relatedness Measurement

This phase is the second contribution in this research. Measurement of semantic relatedness in this research will use the method of Hirst & S-Onge (HSO). In the method of HSO, semantic relatedness can be measured by graph of vocabulary contained in WordNet which consists of nodes that represent words and relations among nodes that describe different relationships. Based on the graph concepts, the method of HSO measures the semantic relatedness using the path distance between both word nodes (path distance), a number of changes of direction of the path connecting both word nodes and based on the allowable path.

![System Design Diagram]

Figure 1. System Design

![Pattern of Combined Development of Hypernym and Synonyms]

Figure 2. Pattern of Combined Development of Hypernym and Synonyms
Basic idea of the HSO method is to determine the semantic relatedness between two words that is compared using cohesion relations to calculate the allowable path between two words. The HSO method has three different types of cohesion relations which directly connects the semantic relatedness between two words [9] [10].

2.3. Extra Strong Relation

Extra strong relation is a relation between two words that have the highest weight of all kinds of other relationships and generates high correlation. An Example of extra strong relation is such comparison of the same words that are “man” and “man” [10]. Value of semantic relatedness for extra strong relation is obtained from equation:

\[2^C \]

where \(C \) is a fixed constant by 8.

2.4. Strong Relation

Strong Relation will occur in two words that have the same parent word or derived from the same parent. Relation used in the concept of parent word is based on the relation of IS-A. Two words are said to have strong relation by the following conditions (a) When two words share the same parent concepts. (b) When there are association relations in the form of a horizontal link (antonyms, similar to, see also, attribute) between parent word of both words. For example, the word man and woman have a correlation of strong relation because both have horizontal links in the form of an antonym. (c) When there is any link between the parent word of each word, if one word is a compound word or phrase that includes other words, For example, the word color and water-color. To measure the semantic relatedness in Strong Relation is the same as in extra strong relation, it uses equation 5.

2.5. Medium Strong Relation

In a medium strong relation, semantic relatedness measurement is done by considering paths allowed (allowable path) and number of change of direction. Path Detail allowed and not allowed can be seen in Figure 3.

![Figure 3. (a) Allowable path (b) Pattern of unallowable path [10]](image)

HSO method provides two rules to ensure that a pathway is appropriate with the relationship between a source and a target word, as follows:

Rule 1: there is no link that precedes upward link. Once a word is narrowed down by using the link downward or horizontal links, it is not allowed to generalize the word again using upward link.

Rule 2: at most, only one change of direction is allowed. An act to change the direction is a big step in the determination of the semantic relatedness between two words, therefore, the change in direction should be limited. But there are two exceptions to this rule, which it is permitted to use a horizontal link to make the transition from the top downwards.
In the medium strong relation, in order to measure the semantic relatedness between two words of HSO method, it uses the following equation:

\[
weight = \frac{(C - Pl - k \times Nd)}{(2 \times C)}
\]

(2)

Where C is a fixed constant by 8, k are fixed constants by 1. While \(\text{Pl}\) is the path length and \(\text{Nd}\) is the number of change direction. the value of \((2 \times C)\) is used for normalize the semantic relatedness value to be in a range of 0 to 1 that will be required by the method of Semantic-FSKNN.

2.6 Semantic-FSKNN Training Phase

Semantic-FSKNN training phase consists of two phases: grouping patterns of training data and prior probability and likelihoods calculation [11].

2.7. Training Pattern Grouping

Grouping the training documents \(d_1, d_2, ..., d_i\) into \(p\) clusters based on fuzzy similarity measure. It is given \(dt(t_i, c_j)\) and \(dd(t_i, c_j)\) that is the distribution of term \(t_i\) at the category \(c_j\), that is defined as follows:

\[
dt(t_i, c_j) = \frac{\sum_{p=1}^{l} w_{ip} y_{jp}}{\sum_{p=1}^{l} w_{ip}}
\]

(3)

\[
dd(t_i, c_j) = \frac{\sum_{p=1}^{l} \text{sgn}(w_{ip}) y_{jp}}{\sum_{p=1}^{l} y_{ip}}
\]

(4)

For \(1 \leq i \leq \text{number of term}\) and \(1 \leq j \leq \text{number of class or category}\), where :

\[
\text{sgn}(x) = \begin{cases} 1, & \text{if } x > 0 \\ 0, & \text{if } x = 0 \\ \end{cases}
\]

(5)

So that it will surely obtain \(0 \leq dt(t_i, c_j) \) and \(dd(t_i, c_j) \leq 1\). The next steps is to calculate the degree of membership \(t_i\) on category \(c_j\), in the process of calculating the degree of membership \(t_i\) on category \(c_j\), it is given a new formula in order that value obtained from the measurement process of semantic relatedness can be taken into account. The addition of a formula contained in the part in bold \((\text{Rel}(t_i,c_j))\), as follows:

\[
\mu_R(t_i, c_j) = \frac{dt(t_i, c_j)}{\max_{1\leq i \leq \text{term}} \text{dt}(t_i, c_j) \times \frac{dd(t_i, c_j)}{\max_{1\leq j \leq \text{class}} \text{dd}(t_i, c_j) \times \text{Rel}(t_i, c_j)}}
\]

(6)

For \(1 \leq i \leq \text{number of term}\) and \(1 \leq j \leq \text{number of class or category}\). Where \(\text{Rel}(t_i, c_j)\) is the value of semantic relatedness between term \(t_i\) and the category \(c_j\) obtained at the phase of semantic relatedness measurement. Every value of \(\text{Rel}(t_i, c_j)\) will be divided by the highest value of the overall value of \(\text{Rel}(t_u, c_v)\).

The next phase is to determine the fuzzy similarity of each document \(d\), \(d=(w_1, w_2, ..., w_m)\) on category \(c_j\) as follows:

\[
sim(d, c_j) = \frac{\sum_{i=1}^{m} \mu_R(t_i, c_j) \Theta \mu_d(t_i)}{\sum_{i=1}^{m} \mu_R(t_i, c_j) \oplus \mu_d(t_i)}
\]

(7)

Where \(\Theta\) and \(\oplus\) is fuzzy \(t\)-\text{norm} and \(t\)-\text{conorm} which is subsequently defined as follows:

\[
x \otimes y = x \times y
\]

(8)

\[
x \oplus y = x + y - x \times y
\]

(9)

And
\[\mu_d(t_i) = \frac{w_i}{\max_{1 \leq p \leq m} w_p} \] (10)

\[\mu_d(t_i) \] is the degree of membership of the term of the document. The final phase is to define the degree of membership of a document \(d \) to the category \(c_j \) as follows:

\[\mu_{c_j}(d) = \frac{\text{sim}(d, c_j)}{\max_{1 \leq p \leq m} \text{sim}(d, c_p)} \] (11)

For \(1 \leq j \leq \text{number of class or category} \). For each training document \(d_i, 1 \leq i \leq \text{number of document} \), will have the calculation \(\mu_{c_j}(d_i) \), \(1 \leq j \leq \text{number of class or category} \), using the equation 15. To define \(\mu_{c_j}(d_i) \), \(1 \leq j \leq \text{number of class or category} \), \(1 \leq u \leq l \).

\[S_v = \{ d_u | \mu_{c_u}(d_u) \geq \alpha, \ 1 \leq u \leq l \} \] (12)

For \(1 \leq v \leq \text{number of class or category} \), where \(\alpha \) is a threshold defined by the user for use in the training process. For every \(d_i, 1 \leq i \leq \text{number of document} \), is defined as search set \(G_i \) for every \(S_v \), \(G_i \); if and only if \(d_i \in S_v, 1 \leq v \leq \text{number of class or category} \). The next process will be described in pseudo-code shown in Figure 4, with a note in the beginning \(S_v = \emptyset, 1 \leq v \leq \text{number of class or category} \).

\begin{figure}[h]
\centering
\begin{verbatim}
for each training document \(d_i, 1 \leq i \leq l \\
 for each category \(c_j, 1 \leq j \leq p \\
 if (\mu_{c_j}(d_i) \geq \alpha) \\
 then \(S_j = S_j \cup \{d_i\} \)
 for each training document \(d_u, 1 \leq u \leq l \\
 for each cluster \(S_v, 1 \leq v \leq p \\
 if \(d_u \in S_v \) \\
 then \(G_v = G_v \cup S_v \)
\end{verbatim}
\caption{Pseudo-code grouping process and the process of defining the search set \(G_i \)}
\end{figure}

Output that is in the form of search set \(G_1, G_2, \ldots, G_l \) will then be used to determine the nearest neighbor data that can help perform calculation of prior probability value and the value of likelihood in the next phase.

2.8. Calculation of Prior Probability and Likelihoods Value

It is given \(P(H_j) \) that is prior probability whose value must be known before continuing into every observation, while \(P(E|H_j) \) is a class of likelihood and a conditional probability that \(H_j \) has been linked with observation \(E \). This probability calculation is done on the training patterns obtained previously, as follows:

\[P(H_j = 1) = \frac{s + \sum_{i=1}^{l} y_{ji}}{2s + l} \] (13)

\[P(H_j = 0) = 1 - P(H_j = 1) \] (14)

Where \(s \) is a smoothing constant value, which is usually a small positive real worth. The next phase is calculating likelihood class of \(P(E|H_j) \). Can be \(0, 1, \ldots, \text{ork} \). For every training document \(d_i, 1 \leq i \leq \text{number of document} \), where \(N^i = \{d_{v1}, d_{v2}, \ldots, d_{vk}\} \) is \(k \)-nearest neighbor obtained from search set \(G_i \) dan \(n^i = \{n_{v1}, n_{v2}, \ldots, n_{vk}\} \), which is a label quantity vector defined:
\[n_j^i = \sum_{r=1}^{v_k} y_{jr} \]
(15)

For \(1 \leq j \leq \) number of class or category. The next step is defined:

\[Z(e, j) = \sum_{i=1}^{l} y_{ji} \delta_{et}(j) \]
(16)

\[\tilde{Z}(e, j) = \sum_{i=1}^{l} \tilde{y}_{ji} \delta_{et}(j) \]
(17)

where \(\tilde{y}_{ji} = 1 - y_{ji} \) and

\[\delta_{et}(j) = \begin{cases} 1, & \text{if } e = n_j^i \\ 0, & \text{if } e \neq n_j^i \end{cases} \]
(18)

Then defines likelihoods, as follows:

\[P(E = e|H_j = 1) = \frac{s + 2\{x_j\}}{(k+1)s + \sum_{v=0}^{\infty} 2(v,j)} \]
(19)

\[P(E = e|H_j = 0) = \frac{s + 2\{x_j\}}{(k+1)s + \sum_{v=0}^{\infty} 2(v,j)} \]
(20)

For every \(e = 0, 1, \ldots, k \) and \(j = 1, 2, \ldots, \) number of class or category, because the size of \(Q_j \), \(1 \leq i \leq \) number of document is always smaller than the number of initial training patterns, computing likelihoods can be done efficiently.

2.9. Semantic-FSKNN Classification Phase

Semantic-FSKNN method testing process is done by using the estimated maximum a posteriori (MAP). For example \(N^t = \{d_{v1}, d_{v2}, \ldots, d_{vk}\} \) is a set \(n\)-nearest neighbors for testing document \(d^t \), and \(n^t = \{n_1^t, n_2^t, \ldots, n_k^t\} \) is the vector sum label for \(d^t \) (equation 19), to determine which category that has a relationship with \(d^t \) is by calculating the label vector \(y^t = \{y_1^t, y_2^t, \ldots, y_k^t\} \) from the document \(d^t \) by using estimation maximum a posteriori (MAP) as follows:

\[y_j^t \begin{cases} 1, & \text{if } P(H_j = 1|E = n_j^t) > P(H_j = 0|E = n_j^t) \\ 0, & \text{if } P(H_j = 0|E = n_j^t) > P(H_j = 1|E = n_j^t) \\ R[0,1], & \text{otherwise} \end{cases} \]
(21)

For \(1 \leq j \leq \) number of category, where \(H_j \) is a random variable to determine entry into a category \(c_j \) or not (\(H_j = 1 \) for yes, and \(H_j = 0 \) for no), \(E \) is a variable for the number of documents with \(N^t \) associated with the category \(c_j \), and \(R[0,1] \) indicates 0 or 1 chosen randomly. By using Bayes Rule it is obtained:

\[P(H_j = b|E = n_j^t) = \frac{P(H_j = b)P(E = n_j^t|H_j = b)}{P(E = n_j^t)} \]
(22)

for \(b = 0, 1 \). Therefore the equation 21 will change into:

\[y_j^t \begin{cases} 1, & \text{if } P(H_j = 1)P(E = n_j^t|H_j = 1) > P(H_j = 0)P(E = n_j^t|H_j = 0) \\ 0, & \text{if } P(H_j = 0)P(E = n_j^t|H_j = 0) > P(H_j = 1)P(E = n_j^t|H_j = 1) \\ R[0,1], & \text{otherwise} \end{cases} \]
(23)

For \(1 \leq j \leq p \). To calculate \(y_j^t \) it must get \(N^t \), and calculate \(P(H_j) \) (equation 13 and 14) and also \(P(E|H_j) \) (Equation 19 and 20). The calculations that does not depend on \(d^t \), it can be
done on the training process and the rest is done when the classification process. The following
is phases during the classification process:
1. Calculate \(\mu_j(d^t), 1 \leq j \leq p \) by equation 11 using the information or the results of calculations
performed by Equation 6, 7 and 10.
2. Check if \(\mu_j(d^t) \geq \alpha \) for \(1 \leq j \leq \text{number of class or category} \), then it will get search set for \(d^t \)
that is \(S_j^1 \cup S_j^2 \cup ... \cup S_j^b \).
3. Find the set \(N^t \) from \(k \)-nearest neighbors on \(d^t \) from \(G^t \), and get the amount of label vector \(n^t \).
4. Calculate \(y^j \), \(1 \leq j \leq p \) using equation 23 by using the information that has been calculated in
the training process with Equation 13, 14, 19 and 20.
5. If \(y^j \) that is obtained is 1, then \(d^t \) belongs category \(c_j \), otherwise \(d^t \) doesn’t belong to \(c_j \).

3. Results and Analysis
Before an explanation of the test results and evaluation, will be explained about the
dataset used in the testing and experiments setting in this research.

3.1. Dataset
Testing phase in this research using a dataset from 1342 requirement sentences
obtained from 6 datasets that Promise [19], Itrust, CCHIT, World Vista US Veterans Health Care
System Documentation, Online Project Marking System SRS, Mars Express Aspera-3 Processing and Archiving Facility SRS. Where the 1342 sentences will be labeled automatically
with the steps described in previous sub-section. From 1342 sentences would be taken 60%
(805 sentences) to be used as training data and 40% (537 sentences) used for test data that
which will be evaluated with accuracy, precision, recall, and hamming loss.

3.2 Experimental Settings
The experimental phase in this research is done by a scenario that is by having a
comparison between the original FSKNN method and FSKNN method that have been added
with semantic factors inside so-called Semantic-FSKNN method. Every method in the
experimental scenario will be tested using the parameter amount of nearest neighbors (k)
from 10 to 55 and each k is tested with a threshold of 0.1 to 0.9. For testing at any threshold
value, it will be evaluated by 4 metrics of hamming loss, accuracy, precision, and recall evaluation.

3.3 Experimental Result
Based on the analysis of the test result, it is known that the best total of k is 30. The
Evaluation of the test result is shown in Table 1, which shows the value of Hamming loss,
accuracy, precision, and recall.

Table 1. Tabulation of hamming loss, accuracy, precision, recall based on FSKNN method and
Semantic-FSKNN method with the amount of k = 30 in the scenario 2

<table>
<thead>
<tr>
<th>Threshold</th>
<th>FSKNN K=30</th>
<th>Semantic-FSKNN K=30</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>32.3%</td>
<td>20.7%</td>
</tr>
<tr>
<td>0.2</td>
<td>33.6%</td>
<td>30.2%</td>
</tr>
<tr>
<td>0.3</td>
<td>34.3%</td>
<td>28.7%</td>
</tr>
<tr>
<td>0.4</td>
<td>29.3%</td>
<td>33.4%</td>
</tr>
<tr>
<td>0.5</td>
<td>26.3%</td>
<td>38%</td>
</tr>
<tr>
<td>0.6</td>
<td>23%</td>
<td>42.8%</td>
</tr>
<tr>
<td>0.7</td>
<td>23.6%</td>
<td>41.9%</td>
</tr>
<tr>
<td>0.8</td>
<td>23.5%</td>
<td>41.4%</td>
</tr>
<tr>
<td>0.9</td>
<td>22.9%</td>
<td>42.2%</td>
</tr>
</tbody>
</table>
Based on the Comparison of evaluation between the FSKNN method and Semantic-FSKNN method in Table 1, it can be seen that the method of Semantic-FSKNN results the lowest Hamming loss at 21.9% and the highest accuracy at 43.7%, which both were obtained at the threshold of 0.8, whereas the highest precision value is also generated by Semantic-FSKNN method amounted to 73.9% obtained in the threshold 0.7 but for recall, it is known that the FSKNN method is higher than Semantic-FSKNN method with a value of 58.7% obtained in the threshold 0.6.

The decline in value of hamming loss of Semantic-FSKNN method is 1.6% and the increase in value of accuracy of Semantic-FSKNN is 2.3%, in the result comparison at the threshold 0.8 and also precision value of Semantic-FSKNN method by 10.3% in comparison of the results at the threshold of 0.7, it indicates the performance of Semantic-FSKNN at the three metrics are better than FSKNN, but for there call performance of FSKNN methodis better than the method of Semantic-FSKNN with an increase of 7.7% in the comparison result in a threshold 0.6. Decline in performance of recall on the Semantic-FSKNN method occurs because the process of forming the training pattern on Semantic-FSKNN method have additional process of search for relationship of semantic relatedness between each category of non-functional requirement and a list of relevant term so that the data formed for the training pattern is filtered more thoroughly.

4. Conclusion

Based on the test result in this research, it can be concluded that the addition of semantic factors on the FSKNN method will improve the performance of hammingloss by 21.9%, 43.7% for the accuracy and 73.9% for the precision. Recall decline in performance on the method of Semantic-FSKNN occurs because the process of training pattern formation on Semantic-FSKNN method has additional process of search for semantic relatedness relationship between each category of the non-functional requirement and a list of relevant terms resulting that the data formed for the training pattern are more strictly filtered.

References

