OPTIMALISASI RUTE DISTRIBUSI MENGGUNAKAN ALGORITMA DJIKSTRA
DOI:
https://doi.org/10.12928/si.v18i1.10807Abstract
Optimization of distribution routes is intended to allocate products to each high school in Surakarta as well as to choose the route that has the biggest time savings so that transportation costs can be optimized. The route currently used is quite long, so the time needed for the distribution is long. Determination of distribution routes using the Djikstra algorithm method is carried out on the distribution of LKS in CV ABC. The Djikstra algorithm method allows route optimization by taking into account vehicle capacity and number of demand from each customer. The data used are the distance between the warehouse to each high school and the distance between high schools, the quantity delivery per customer, and the vehicle capacity. The results of this study are that if implementing the shipping allocation by prioritizing the closest distance in advance it will save more travel time than applying the allocation used by this company. Based on the analysis, it was found that the optimal shortest route in the distribution of LKS to SMA was to save fuel needs by 1.21 liters and save transportation costs by Rp. 9075 or 17.89% of the initial transportationcosts.References
Andayani, Sri., Perwitasari, Endah Wulan. (2014). Penerapan Rute Terpendek Pengambilan Sampah di Kota Merauke Menggunakan Algoritma Dijikstra. Jurnal SEMANTIK 2014.
Anwar, Dessy. (2001). Kamus Bahasa Indonesia, Surabaya: Karya Abditama.
Ardana, Dwi., Saputra, Ragil., (2016). Penerapan Algoritma Dijikstra pada Aplikasi Pencarian Rute Bus Trans Semarang. Seminar Nasional Ilmu Komputer 2016. Semarang. 299-306
Deiby T. Salaki. (2011). Penentuan Lintasan Terpendek Dari FMIPA ke Rektorat dan Fakultas lain di UNSRAT Manado Menggunakan Algoritma Dijkstra. Jurnal Ilmiah Sains. 11(1).
Dewi, Luh Joni Erawati,. (2010). Pencarian Rute Terpendek Tempat Wisata Di Bali Dengan Menggunakan Algoritma Dijkstra. Prosiding SNATI 2010. Yogyakarta. D-46-D-49.
Fadli, Hadyan. (2008). Studi Minimum Spanning Tree dengan Algoritma Prim dan Kruskal. Jurnal Mantik Penusa. 17(1).
Fuad,M. (2006). Pengantar Bisnis. Jakarta: Gramedia Pustaka Utama.
Joyner, D.M. V. Nguyen and N. Cohen,. (2010). Algorithmic Graph Theory Version 0.3.
Munir R. (2010). Matematika Diskrit Edisi Keempat. Bandung: Penerbit Informatika
Muliyono Joko,. (2010). Perencanaan Rute Transportasi Terpendek Menggunakan Metode Optimasi. Jurnal Matik Penusa. 17(1).
Novandi, R. A. D. (2007). Perbandingan Algoritma Dijkstra dan Algoritma Floyd-Warshall dalam Penentuan Lintasan (Single Pair Shortest Path), Bandung : Program Studi Teknik Informatika, Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung.
Prima. (2010). Membandingkan Algoritma Prim dan Algoritma Kruskal dalam Pemecahan Masalah Pohon Merentang Minimum. Jurnal Ilmiah SAINTIKOM. 14(1).
Purwanto, Yudi., Purwitasari, Diana., Wibowo, Agung Wahyu., (2005). Implementasi dan Analisis Algoritma Pencarian Rute Terpendek di Kota Surabaya. Jurnal Penelitian dan Pengembangan Telekomunikasi, 10 (2).
Ratnasari, A., Ardiani, F., A, Feny Nurvita., (2013).Penentuan Jarak Terpendek dan Jarak Terpendek Alternatif Menggunakan Algoritma Dijikstra Serta Estimasi Waktu Tempuh. Jurnal SEMATIK, 3(1), 29-34.
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.