Publication trend of TMPRSS2 as SARS-CoV-2 receptor during the COVID-19 pandemic

Lalu Muhammad Irham, Dyah Aryani Perwitasari, Yudha Rizky Nuari, Wirawan Adikusuma, Haafizah Dania, Rita Maliza, Made Ary Sarasmita, Rocky Cheung, Adi Wira Septama

Abstract


The Coronavirus Disease 2019 (COVID-19) pandemic has not yet been fully under public health control, which is still currently impacting a large number of people worldwide in 2023. Since the pandemic emerged, the growing number of publications related to TMPRSS2 as a SARS-CoV-2 receptor worldwide has increased rapidly with various findings and qualities. It is important to determine the trend of TMPRSS2 publication as no such studies currently exist that represent the publication trend related to this critical field of study. Here, we employed a bibliometric-based approach to evaluate the research trends of TMPRSS2 mechanistically as the SARS-CoV-2 receptor. We identified 1012 research documents published between 2020 and 2022 for this study. The most common document category was "Research Article" (646 articles, 63.84%) followed by "Review Article" (261 articles, 25.79%), and letters to editors (57 articles, 5.63%). Germany was the most cited country with a total of citations (9400 citations), followed by the USA (6409 citations) and China (1788 citations), respectively. In conclusion, given the impact of COVID-19, this study indicated TMPRSS2 as a SARS-CoV-2 receptor as a timely and highly relevant research topic.


Keywords


bibliometrics; COVID-19; SARS-CoV-2; TMPRSS2

Full Text:

PDF

References


Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959-975. doi:https://doi.org/10.1016/j.joi.2017.08.007

Brandt, J. S., Hadaya, O., Schuster, M., Rosen, T., Sauer, M. V., & Ananth, C. V. (2019). A Bibliometric Analysis of Top-Cited Journal Articles in Obstetrics and Gynecology. JAMA Netw Open, 2(12), e1918007. doi:10.1001/jamanetworkopen.2019.18007

Callaham, M., Wears, R. L., & Weber, E. (2002). Journal prestige, publication bias, and other characteristics associated with citation of published studies in peer-reviewed journals. Jama, 287(21), 2847-2850. doi:10.1001/jama.287.21.2847

Cantuti-Castelvetri, L., Ojha, R., Pedro, L. D., Djannatian, M., Franz, J., Kuivanen, S., . . . Simons, M. (2020). Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science, 370(6518), 856-860. doi:10.1126/science.abd2985

Chan, J. F., Yuan, S., Kok, K. H., To, K. K., Chu, H., Yang, J., . . . Yuen, K. Y. (2020). A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet, 395(10223), 514-523. doi:10.1016/s0140-6736(20)30154-9

Falagas, M. E., Pitsouni, E. I., Malietzis, G. A., & Pappas, G. (2008). Comparison of PubMed, Scopus, Web of Science, and Google Scholar: strengths and weaknesses. The FASEB Journal, 22(2), 338-342. doi:https://doi.org/10.1096/fj.07-9492LSF

Glowacka, I., Bertram, S., Müller, M. A., Allen, P., Soilleux, E., Pfefferle, S., . . . Pöhlmann, S. (2011). Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. J Virol, 85(9), 4122-4134. doi:10.1128/jvi.02232-10

Hirsch, J. E. (2005). An index to quantify an individual's scientific research output. Proceedings of the National Academy of Sciences of the United States of America, 102(46), 16569. doi:10.1073/pnas.0507655102

Hoffmann, M., Kleine-Weber, H., & Pöhlmann, S. (2020). A Multibasic Cleavage Site in the Spike Protein of SARS-CoV-2 Is Essential for Infection of Human Lung Cells. Mol Cell, 78(4), 779-784.e775. doi:10.1016/j.molcel.2020.04.022

Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., . . . Pöhlmann, S. (2020). SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell, 181(2), 271-280.e278. doi:https://doi.org/10.1016/j.cell.2020.02.052

Hoffmann, M., Kleine-Weber, H., Schroeder, S., Kruger, N., Herrler, T., Erichsen, S., . . . Pohlmann, S. (2020). SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. doi:10.1016/j.cell.2020.02.052

Hou, Y. J., Okuda, K., Edwards, C. E., Martinez, D. R., Asakura, T., Dinnon, K. H., 3rd, . . . Baric, R. S. (2020). SARS-CoV-2 Reverse Genetics Reveals a Variable Infection Gradient in the Respiratory Tract. Cell, 182(2), 429-446.e414. doi:10.1016/j.cell.2020.05.042

Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., . . . Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 395(10223), 497-506. doi:10.1016/s0140-6736(20)30183-5

Jones, A. W. (2016). Forensic Journals: Bibliometrics and Journal Impact Factors. In J. Payne-James & R. W. Byard (Eds.), Encyclopedia of Forensic and Legal Medicine (Second Edition) (pp. 528-538). Oxford: Elsevier.

Leng, Z., Zhu, R., Hou, W., Feng, Y., Yang, Y., Han, Q., . . . Zhao, R. C. (2020). Transplantation of ACE2(-) Mesenchymal Stem Cells Improves the Outcome of Patients with COVID-19 Pneumonia. Aging Dis, 11(2), 216-228. doi:10.14336/ad.2020.0228

Li, W., Moore, M. J., Vasilieva, N., Sui, J., Wong, S. K., Berne, M. A., . . . Farzan, M. (2003). Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature, 426(6965), 450-454. doi:10.1038/nature02145

Liu, P. P., Blet, A., Smyth, D., & Li, H. (2020). The Science Underlying COVID-19: Implications for the Cardiovascular System. Circulation, 142(1), 68-78. doi:10.1161/circulationaha.120.047549

Lukassen, S., Chua, R. L., Trefzer, T., Kahn, N. C., Schneider, M. A., Muley, T., . . . Eils, R. (2020). SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells. Embo j, 39(10), e105114. doi:10.15252/embj.20105114

Malekpour, M.-R., Abbasi-Kangevari, M., Azadnajafabad, S., Ghamari, S.-H., Rezaei, N., Rezazadeh-Khadem, S., . . . Farzadfar, F. (2021). How the scientific community responded to the COVID-19 pandemic: A subject-level time-trend bibliometric analysis. PLOS ONE, 16(9), e0258064. doi:10.1371/journal.pone.0258064

Organization, W. H. (2020, 19 March 2020). Naming the coronavirus disease (COVID-19) and the virus that causes it. Retrieved from https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it

Rahman, M., & Fukui, T. (2003). Biomedical research productivity: factors across the countries. Int J Technol Assess Health Care, 19(1), 249-252. doi:10.1017/s0266462303000229

Shang, J., Ye, G., Shi, K., Wan, Y., Luo, C., Aihara, H., . . . Li, F. (2020). Structural basis of receptor recognition by SARS-CoV-2. Nature, 581(7807), 221-224. doi:10.1038/s41586-020-2179-y

Smith, T. R. F., Patel, A., Ramos, S., Elwood, D., Zhu, X., Yan, J., . . . Broderick, K. E. (2020). Immunogenicity of a DNA vaccine candidate for COVID-19. Nat Commun, 11(1), 2601. doi:10.1038/s41467-020-16505-0

Sungnak, W., Huang, N., Bécavin, C., Berg, M., Queen, R., Litvinukova, M., . . . Network, H. C. A. L. B. (2020). SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nature Medicine, 26(5), 681-687. doi:10.1038/s41591-020-0868-6

van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523-538. doi:10.1007/s11192-009-0146-3

Wordometers. (2022). COVID-19 CORONAVIRUS PANDEMIC. Retrieved from https://www.worldometers.info/coronavirus/

Zang, R., Gomez Castro, M. F., McCune, B. T., Zeng, Q., Rothlauf, P. W., Sonnek, N. M., . . . Ding, S. (2020). TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small intestinal enterocytes. Sci Immunol, 5(47). doi:10.1126/sciimmunol.abc3582

Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., . . . Tan, W. (2020). A Novel Coronavirus from Patients with Pneumonia in China, 2019. 382(8), 727-733. doi:10.1056/NEJMoa2001017

Ziegler, C. G. K., Allon, S. J., Nyquist, S. K., Mbano, I. M., Miao, V. N., Tzouanas, C. N., . . . Ordovas-Montanes, J. (2020). SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues. Cell, 181(5), 1016-1035.e1019. doi:10.1016/j.cell.2020.04.035




DOI: http://dx.doi.org/10.12928/pharmaciana.v13i1.24052

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Lalu Muhammad Irham, Dyah Aryani Perwitasari, Yudha Rizky Nuari, Wirawan Adikusuma, Haafizah Dania, Rita Maliza, Made Ary Sarasmita, Rocky Cheung

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


 
Pharmaciana
ISSN Print: 2088-4559 | ISSN Online: 2477-0256
Website: http://journal.uad.ac.id/index.php/PHARMACIANA
Office: Faculty of  Pharmacy, Universitas Ahmad Dahlan
Jl. Prof. Dr. Soepomo, S.H., Janturan, Warungboto, Umbulharjo, Yogyakarta, Indonesia
Kode pos 55164
Email: pharmaciana@pharm.uad.ac.id