Antibacterial compound from Euchema spinosum originated from Tasikmalaya West Java against pathogen bacteria with TLC-bioautography

Indra Topik Maulana, Rifa Safira, Inge Aprianti, Livia Syafnir, Reza Abdul Kodir

Abstract


Streptococcus mutans (Gram-positive) and Shigella dysenteriae (Gram-negative) are two types of pathogen bacteria. The use of synthetic antibiotics against both bacteria is known to impact the bacteria's resistance. E. spinosum from Tasikmalaya is a potential macroalgae as a source of an antibacterial compound for both bacteria. The research aims to determine the antibacterial metabolite compound from E. spinosum originated from Tasikmalaya against S. mutans and S. dysenteriae. The research was conducted through several stages, starting from phytochemical screening, gradual maceration using hexane, ethyl acetate, and methanol, determination of antibacterial activity, and TLC-bioautography. Phytochemical screening showed that both raw material and extracts contained alkaloids, flavonoids, and steroids. The result showed that hexane, ethyl acetate, and methanol extract could inhibit the growth of S. dysenteriae starting from a concentration of 400 µg/mL. However, only ethyl acetate extract can inhibit the growth of S. mutans, starting from a concentration of 20 µg/mL. The chromatogram of the hexane extract showed the presence of 6 spots, ethyl acetate extract showed 5, and the methanol extract showed only 4, resulted from the elution system, respectively. The TLC-bioautography against S. dysenteriae showed that there was the presence of three clear zones on the ethyl acetate extract, detected as flavonoid, and three clear zones on the methanol extract. The TLC-bioautography against S. mutans showed one clear zone on the chromatogram of ethyl acetate extract. According to the AlCl3 spray reagent confirmation test, the active compound was the flavonoid group.


Keywords


Eucheuma spinosum; Streptococcus mutans; Shigella dysenteriae; Tasikmalaya; TLC-bioautography

Full Text:

PDF

References


Ahmed, A. M., & Shimamoto, T. (2015). Molecular characterization ofmultidrug-resistant Shigella spp. of food origin. International Journal of Food Microbiology, 194, 78–82. https://doi.org/10.1016/j.ijfoodmicro.2014.11.013

Al-Saman, M., Hamouda, R., Abdella, A., El-Sabbagh, S., & El-Seoud, G. (2018). TLC Bioautographic Detection and Characterization of Antibacterial Compound from the Cyanobacterium Anabaena oryzae. AJB2T, 3(1), 1–13. https://doi.org/10.9734/ajb2t/2018/39097

Alemu, A., Geta, M., Taye, S., Eshetie, S., & Engda, T. (2019). Prevalence, associated risk factors and antimicrobial susceptibility patterns of Shigella infections among diarrheic pediatric population attending at Gondar town healthcare institutions, Northwest Ethiopia. Tropical Diseases, Travel Medicine and Vaccines, 5(1), 1–8. https://doi.org/10.1186/s40794-019-0079-7

André, C. B., Chan, D. C., & Giannini, M. (2018). Antibacterial-containing dental adhesives’ effects on oral pathogens and on Streptococcus mutans biofilm: Current perspectives. American Journal of Dentistry, 31(Sp Is B), 37B-41B.

Anestopoulos, I., Kiousi, D. E., Klavaris, A., Maijo, M., Serpico, A., Suarez, A., Sanchez, G., Salek, K., Chasapi, S. A., Zompra, A. A., Galanis, A., Spyroulias, G. A., Gombau, L., Euston, S. R., Pappa, A., & Panayiotidis, M. I. (2020). Marineâ€derived surface active agents: Health†promoting properties and blue biotechnologyâ€based applications. Biomolecules, 10(6), 1–28. https://doi.org/10.3390/biom10060885

Batista, A., Dodou, H., Rodrigues, M., Pereira, P., Sales, G., Medeiros, S., & Nogueira, N. (2018). Modulatory effect of lippia alba essential oil on the activity of clinically used antimicrobial agents on salmonella typhi and shigella dysenteriae biofilm. Scientia Pharmaceutica, 86(4). https://doi.org/10.3390/scipharm86040052

BPPKP. (2018). Info Komoditi Rumput Laut. In Z. Salim & Ernawati (Eds.). Al Mawardi Prima

Briones, A. V., & Sato, T. (2014). Structural Studies on ι-Carrageenan Derived Oligosaccharides and Its Application. Advances in Chemical Engineering and Science, 04(01), 17–22. https://doi.org/10.4236/aces.2014.41003

Cortés, Y., Hormazábal, E., Leal, H., Urzúa, A., Mutis, A., Parra, L., & Quiroz, A. (2014). Novel antimicrobial activity of a dichloromethane extract obtained from red seaweed Ceramium rubrum (Hudson) (Rhodophyta: Florideophyceae) against Yersinia ruckeri and Saprolegnia parasitica, agents that cause diseases in salmonids. Electronic Journal of Biotechnology, 17(3), 126–131. https://doi.org/10.1016/j.ejbt.2014.04.005

Czernicka, L., Grzegorczyk, A., Marzec, Z., Antosiewicz, B., Malm, A., & Kukula-Koch, W. (2019). Antimicrobial Potential of Single Metabolites of Curcuma longa Assessed in the Total Extract by Thin-Layer Chromatography-Based Bioautography and Image Analysis. Int. J. Mol. Sci, 20(4). https://doi.org/10.3390/ijms20040898

Dewanjee, S., Gangopadhyay, M., Bhattacharya, N., Khanra, R., & Dua, T. K. (2015). Bioautography And Its Scope In The Field Of Natural Product Chemistry. In Journal of Pharmaceutical Analysis (Vol. 5, Issue 2, pp. 75–84). Xi’an Jiaotong University. https://doi.org/10.1016/j.jpha.2014.06.002

Dharmautama, M., Ikhriahni, Manggau, M. A., Tetelepta, R., Malik, A., Muchtr, M., Amiruddin, M., Asse, R. A., & Arfa, S. (2019). The effectiveness of Sargassum polycystum extract against Streptococcus mutans and Candida albicans as denture cleanser. Journal of International Dental and Medical Research, 12(2), 528–532

El-Gendy, A. M., Mansour, A., Weiner, M. A., Pimentel, G., Armstrong, A. W., Young, S. Y. N., Klena, J. D., & Elsayed, N. (2012). Genetic diversity and antibiotic resistance in Shigella dysenteriae and Shigella boydii strains isolated from children aged <5 years in Egypt. Epidemiol. Infect. (2012),140, 299–310. https://doi.org/10.1017/S0950268811000525

Farhadi, F., Khameneh, B., Iranshahi, M., & Iranshahy, M. (2019). Antibacterial activity of flavonoids and their structure–activity relationship: An update review. Phytotherapy Research, 33(1), 13–40. https://doi.org/10.1002/ptr.6208

George, D. E., Shetty, R., Shetty, P. J., & Gomes, L. A. (2017). An in vitro study to compare the effect of different types of tea with chlorhexidine on streptococcus mutans. Journal of Clinical and Diagnostic Research, 11(9), ZC05–ZC07. https://doi.org/10.7860/JCDR/2017/26581.10538

Harborne, J. B. (1973). Phytochemical Methods : A guide to modern techniques of plant analysis. In Chapman and Hall in (1st ed.). Chapman & Hall. https://doi.org/10.1007/978-94-009-5921-7

Hung, L. D., Hirayama, M., Ly, B. M., & Hori, K. (2015). Purification, primary structure, and biological activity of the high-mannose N-glycan-specific lectin from cultivated Eucheuma denticulatum. Journal of Applied Phycology, 27(4), 1657–1669. https://doi.org/10.1007/s10811-014-0441-0

Jiang, M., Yan, L., Li, K. ao, Ji, Z. hong, & Tian, S. ge. (2020). Evaluation of total phenol and flavonoid content and antimicrobial and antibiofilm activities of Trollius chinensis Bunge extracts on Streptococcus mutans. Microscopy Research and Technique, February, 1–9. https://doi.org/10.1002/jemt.23540

Jones, C. G. (1997). Chlorhexidine: Is It Still the Gold Standard? Periodontology 2000, 15, 55–62. https://doi.org/10.1111/j.1600-0757.1997.tb00105.x

Kang, J., Liu, L., Liu, Y., & Wang, X. (2020). Ferulic Acid Inactivates Shigella flexneri through Cell Membrane Destructieon, Biofilm Retardation, and Altered Gene Expression. Journal of Agricultural and Food Chemistry, 68(27), 7121–7131. https://doi.org/10.1021/acs.jafc.0c01901

Khan, M., Alkhathlan, H. Z., & Khan, S. T. (2020). Antibiotic and antibiofilm activities of Salvadora persica l. Essential oils against Streptococcus mutans: A detailed comparative study with chlorhexidine digluconate. Pathogens, 9(1). https://doi.org/10.3390/pathogens9010066

Khatulistiani, T. S., Noviendri, D., Munifah, I., & Melanie, S. (2019). Bioactivities of red seaweed extracts from Banten, Indonesia. IOP Conference Series: Earth and Environmental Science, 404(1). https://doi.org/10.1088/1755-1315/404/1/012065

KKP. (2018). Laporan Tahunan : Profil Peluang Investasi Komoditas Rumput Laut (C. Sarwanto, I. N. Sjarief, H. Susanto, A. Solah, I. Kurnia, C. Aryshandy, D. Kusumah, E. Horida, S. Wahyuni, L. Moriansyah, N. D. Purnama, & R. Wicaksono (eds.)). Direktorat Usaha dan Investasi

Mattulada, I. K., Trilaksana, A. C., N, D. A. A. M., Gigi, D. K., Kedokteran, F., & Universitas, G. (2018). Antibacterial Effectivity of red algae extract (Euchema spinosum) to inhibit the growth of bacteri Porphyromonas gingivalis. Makassar Dent J, 7(1), 40–45

Medina-Flores, D., Ulloa-Urizar, G., Camere-Colarossi, R., Caballero-García, S., Mayta-Tovalino, F., & del Valle-Mendoza, J. (2016). Antibacterial activity of Bixa orellana L. (achiote) against Streptococcus mutans and Streptococcus sanguinis. Asian Pacific Journal of Tropical Biomedicine, 6(5), 400–403. https://doi.org/10.1016/j.apjtb.2016.03.005

Mitsuhata, C., Puteri, M. M., Ohara, Y., Tatsukawa, N., & Kozai, K. (2013). Possible involvement of enolase in fluoride resistance in Streptococcus mutans. Pediatric Dental Journal, 1–5. https://doi.org/10.1016/j.pdj.2013.10.002

Nweze, J. A., Mbaoji, F. N., Huang, G., Li, Y., Yang, L., Zhang, Y., Huang, S., Pan, L., & Yang, D. (2020). Antibiotics development and the potentials of marine-derived compounds to stem the tide of multidrug-resistant pathogenic bacteria, fungi, and protozoa. Marine Drugs, 18(3). https://doi.org/10.3390/md18030145

Othman, R., Amin, N. A., Sani, M. S. A., Fadzillah, N. A., & Jamaludin, M. A. (2018). Carotenoid and chlorophyll profiles in five species of Malaysian seaweed as potential Halal Active Pharmaceutical Ingredient (API). International Journal on Advanced Science, Engineering and Information Technology, 8(4–2), 1610–1616. https://doi.org/10.18517/ijaseit.8.4-2.7041

Pérez, M. J., Falqué, E., & Domínguez, H. (2016). Antimicrobial action of compounds from marine seaweed. Marine Drugs, 14(3), 1–38. https://doi.org/10.3390/md14030052

Puzari, M., Sharma, M., & Chetia, P. (2017). Emergence of antibiotic resistant Shigella species : A matter of concern. Journal of Infection and Public Health. https://doi.org/10.1016/j.jiph.2017.09.025

Ramadan, R., Ahmad, A., Marinda, Natsir, H., Karim, A., & Karim, H. (2019). Symbiont bacteria cultures from the red algae Eucheuma spinosum, isolation of bioactive proteins and their anticancer potential test. Journal of Physics: Conference Series, 1341(3). https://doi.org/10.1088/1742-6596/1341/3/032020

Rarassari, M. A., Darius, & Kartikaningsih, H. (2016). Inhibition Of Eucheuma Spinosum Extract With Different Concentration Of Bacillus Cereus. Samakia: Jurnal Ilmu Perikanan, 7(1), 5–11

Safitri, A., Srihardyastutie, A., Roosdiana, A., & Sutrisno, S. (2018). Antibacterial Activity and Phytochemical Analysis of Edible Seaweed Eucheuma spinosum Against Staphyloccocus aureus. The Journal of Pure and Applied Chemistry Research, 7(3), 308–315. https://doi.org/10.21776/ub.jpacr.2018.007.03.389

Singkoh, M. F. O., Mantiri, D. M. H., Lumenta, C., & Manoppo, H. (2019). Biomineral characterization and antibacterial activity of marine algae tricleocarpa fragilis from kora-kora coastal waters of Minahasa Regency, Indonesia. AACL Bioflux, 12(5), 1814–1822

Sugrani, A., Natsir, H., Djide, M. N., & Ahmad, A. (2019). Biofunctional Protein Fraction From Red Algae (Rhodophyta) Eucheuma Spinosum As an Antibacterial and Anticancer Drug Agent. International Research Journal Of Pharmacy, 10(3), 64–69. https://doi.org/10.7897/2230-8407.100380

Tofiño-Rivera, A., Ortega-Cuadros, M., Galvis-Pareja, D., Jiménez-Rios, H., Merini, L. J., & Martínez-Pabón, M. C. (2016). Effect of Lippia alba and Cymbopogon citratus essential oils on biofilms of Streptococcus mutans and cytotoxicity in CHO cells. Journal of Ethnopharmacology, 194(September), 749–754. https://doi.org/10.1016/j.jep.2016.10.044

Ulumiah, M., Alamsjah, M. A., & Pursetyo, T. (2019). The Effect of Different pH in Extraction Process Against Physicochemical Properties of Refined Iota Carrageenan from Eucheuma spinosum Seaweed. Journal of Marine and Coastal Science, 8(1), 14–25. https://doi.org/10.20473/jmcs.v8i1.21142

Veloz, J. J., Alvear, M., & Salazar, L. A. (2019). Antimicrobial and Antibiofilm Activity against Streptococcus mutans of Individual and Mixtures of the Main Polyphenolic Compounds Found in Chilean Propolis. BioMed Research International, 2019. https://doi.org/10.1155/2019/7602343

Xu, Y., Zhu, A., Cao, F., & Liu, Y. F. (2018). Diketopiperazine Alkaloids and Steroids from a Marine-Derived Pleosporales sp. Fungus. Chemistry of Natural Compounds, 54(4), 818–820. https://doi.org/10.1007/s10600-018-2487-8

Zou, Z. X., Xu, P. S., Wu, C. R., Zhu, W. X., Zhu, G. Z., He, X. A., Zhang, G. G., Hu, J. Z., Liu, S., Zeng, W., Xu, K. P., & Tan, G. S. (2016). Carboxymethyl flavonoids and a chromone with antimicrobial activity from Selaginella moellendorffii Hieron. Fitoterapia, 111, 124–129. https://doi.org/10.1016/j.fitote.2016.04.022




DOI: http://dx.doi.org/10.12928/pharmaciana.v11i3.18144

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 indra topik maulana, Rifa Safira, inge Aprianti, Livia Syafnir, Reza Abdul Kodir

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


 
Pharmaciana
ISSN Print: 2088-4559 | ISSN Online: 2477-0256
Website: http://journal.uad.ac.id/index.php/PHARMACIANA
Office: Faculty of  Pharmacy, Universitas Ahmad Dahlan
Jl. Prof. Dr. Soepomo, S.H., Janturan, Warungboto, Umbulharjo, Yogyakarta, Indonesia
Kode pos 55164
Email: pharmaciana@pharm.uad.ac.id