Green tea extract-mediated augmentation of imipenem antibacterial activity against Enterobacter cloacae clinical isolates

Rezky Yanuarti, Firzan Nainu, Sartini Sartini

Abstract


The emergence of pathogenic bacteria with β-lactam antibiotics-resistant profile has threatened the continued use of such antibiotics in the future. This research was conducted to investigate the antimicrobial activity of green tea ethanol extract (GTE) and its ability to improve the antibacterial action of several β-lactam antibiotics against Enterobacter cloacae clinical isolates. The simplicia of green tea was extracted by sonication for 30 minutes using 50% ethanol solvent, and the total phenolic content of the GTE was subsequently determined. Next, the GTE used in testing against two clinical isolates of E. cloacae was obtained from the Pathology Laboratory of Wahidin Sudiro Husodo Hospital in Makassar. The sensitivity of bacteria to GTE was confirmed using the agar diffusion method, the Vitek® rapid method, and the double-disk synergistic test. Antibacterial activity of antibiotics, GTE, and combination of antibiotics with GTE were then tested against clinical isolates of E. cloacae using the checkerboard microdilution assay. The results showed that GTE contained 51.64 ± 0.21 % measured as gallic acid equivalent and 37.95 + 5.17 % Epigallocatechin gallate (EGCG). The confirmatory test results indicated that one clinical isolate of E. cloacae (code 13/04) was resistant to amoxicillin-clavulanate but did not produce an extended-spectrum β-lactamase (ESBL). Another clinical E. cloacae isolate (code 275B/06) was indicated to produce ESBL and demonstrated to yield resistance to amoxicillin-clavulanate and cefotaxime. The minimum inhibitory concentration of GTE against the two clinical isolates of E. cloacae was >8000 ppm (8 mg/ml). In conclusion, GTE could not increase the antibacterial activity of amoxicillin and cefotaxime, but it was sufficient to improve the activity of imipenem against the tested isolates of E. cloacae.


Keywords


β-lactam antibiotics; Camellia sinensis L.;Antibacterial modulation; E. cloacae

Full Text:

PDF

References


Annavajhala, M.K., Gomez-Simmonds, A., and Uhlemann, A.-C. (2019). Multidrug-resistant Enterobacter cloacae complex emerging as a global, diversifying threat. Frontiers in Microbiology 10(44),1-8. doi: 10.3389/fmicb.2019.00044.

Bazzaz, B.S.F., Sarabandi, S., Khameneh, B., and Hosseinzadeh, H. (2016). Effect of catechins, green tea extract and methylxanthines in combination with gentamicin against Staphylococcus aureus and Pseudomonas aeruginosa: - combination therapy against resistant bacteria. Journal of Pharmacopuncture 19(4), 312-318. doi: 10.3831/KPI.2016.19.032.

Bermejo, D.V., Mendiola, J.A., Ibáñez, E., Reglero, G., and Fornari, T. (2015). Pressurized liquid extraction of caffeine and catechins from green tea leaves using ethyl lactate, water and ethyl lactate + water mixtures. Food and Bioproducts Processing 96, 106-112. doi: https://doi.org/10.1016/j.fbp.2015.07.008.

Cho, Y.S., Oh, J.J., and Oh, K.H. (2011). Synergistic anti-bacterial and proteomic effects of epigallocatechin gallate on clinical isolates of imipenem-resistant Klebsiella pneumoniae. Phytomedicine 18(11), 941-946. doi: 10.1016/j.phymed.2011.03.012.

Coutinho, H.D., Costa, J.G., Lima, E.O., Falcão-Silva, V.S., and Siqueira-Júnior, J.P. (2008). Enhancement of the antibiotic activity against a multiresistant Escherichia coli by Mentha arvensis L. and chlorpromazine. Chemotherapy 54(4), 328-330. doi: 10.1159/000151267.

Davin-Regli, A., and Pagès, J.-M. (2015). Enterobacter aerogenes and Enterobacter cloacae; versatile bacterial pathogens confronting antibiotic treatment. Frontiers in Microbiology 6, 392-392. doi: 10.3389/fmicb.2015.00392.

El-Azizi, M. (2016),Novel microdilution method to assess double and triple antibiotic combination therapy in vitro. International Journal of Microbiology, Volume 2016, Article ID 4612021,1-10.

Fankam, A.G., Kuiate, J.-R., and Kuete, V. (2017). Antibacterial and antibiotic resistance modulatory activities of leaves and bark extracts of Recinodindron heudelotii (Euphorbiaceae) against multidrug-resistant Gram-negative bacteria. BMC Complementary And Alternative Medicine 17(1), 168-168. doi: 10.1186/s12906-017-1687-2.

Huang, L.F., Lee, C.T., Su, L.H., and Chang, C.L. (2017). A Snapshot of co-resistance to carbapenems and tigecycline in clinical isolates of Enterobacter cloacae. Microb Drug Resist 23(1), 1-7. doi: 10.1089/mdr.2015.0311.

Jain, S., T, V., V, R., Bc, D., Sampath, A., Siddhalingeshwar, et al. (2011). Antibiotic synergy test: Checkerboard method on multi drug resistant Pseudomonas aeruginosa. International Research Journal of Pharmacy 2, 196-198.

Júnior, F., Matias, E., Oliveira, D., Ramos, A., Fernandes, C., Souza, H., et al. (2011). Modulatory antibiotic activity and chemical composition of hydroalcoholic extract of Croton campestris. Journal of Medicinal Plant Research 5.

Khalaf, N., Shakya, A., Al-Othman, A., Elagbar, Z., and Farah, H. (2008). Antioxidant activity of some common plants. Turkish Journal of Biology, 32, 51-55.

Matias, E.F.F., Santos, K.K.A., Almeida, T.S., Costa, J.G.M., and Coutinho, H.D.M. (2011). Phytochemical screening and modulation of antibiotic activity by Ocimum gratissimum L. Biomedicine & Preventive Nutrition 1(1), 57-60. doi: https://doi.org/10.1016/j.bionut.2010.09.007.

Mezzatesta, M.L., Gona, F., and Stefani, S. (2012). Enterobacter cloacae complex: clinical impact and emerging antibiotic resistance. Future Microbiol 7(7), 887-902. doi: 10.2217/fmb.12.61.

Miklasińska, M., Kępa, M., Wojtyczka, R.D., Idzik, D., Dziedzic, A., and Wąsik, T.J. (2016). Catechin hydrate augments the antibacterial action of selected antibiotics against Staphylococcus aureus clinical strains. Molecules (Basel, Switzerland) 21(2), 244-244. doi: 10.3390/molecules21020244.

Nakayama, M., Shimatani, K., Ozawa, T., Shigemune, N., Tsugukuni, T., Tomiyama, D., et al. (2013). A study of the antibacterial mechanism of catechins: Isolation and identification of Escherichia coli cell surface proteins that interact with epigallocatechin gallate. Food Control 33(2), 433-439. doi: https://doi.org/10.1016/j.foodcont.2013.03.016.

Parvez, M., Saha, K., Rahman, J., Munmun, A., Rahman, A., Dey, D.S., et al. (2019). Antibacterial activities of green tea crude extracts and synergistic effects of epigallocatechingallate (EGCG) with gentamicin against MDR pathogens. Heliyon 5(7), 1-5, doi: 10.1016/j.heliyon.2019.e02126

Pasrija, D., and Anandharamakrishnan, C. (2015). Techniques for extraction of green tea polyphenols: A review. Food and Bioprocess Technology 8(5), 935-950. doi: 10.1007/s11947-015-1479-y.

Radji, M., Fauziah, S., and Aribinuko, N. (2011). Antibiotic sensitivity pattern of bacterial pathogens in the intensive care unit of Fatmawati Hospital, Indonesia. Asian Pacific Journal of Tropical Biomedicine 1(1), 39-42. doi: 10.1016/S2221-1691(11)60065-8.

Reygaert, W.C. (2014). The antimicrobial possibilities of green tea. Frontiers In Microbiology 5, 434-434. doi: 10.3389/fmicb.2014.00434.

Rodríguez-Baño, J., Gutiérrez-Gutiérrez, B., Machuca, I., and Pascual, A. (2018). Treatment of infections caused by extended-spectrum-beta-lactamase-, ampc-, and carbapenemase-producing Enterobacteriaceae. Clinical Microbiology Reviews 31(2), e00079-00017. doi: 10.1128/CMR.00079-17.

Sartini, S., Djide, M., Amir, M., and Permana, A. (2020). Phenolic-rich green tea extract increases the antibacterial activity of amoxicillin against Staphylococcus aureus by in vitro and ex vivo studies. Journal of Pharmacy and Pharmacognosy Research 8(6), 491-500.

Sartini, S., Djide, M.N., and Nainu, F. (2019). Correlation phenolic concentration to antioxidant and antibacterial activities of several ethanolic extracts from Indonesia. Journal of Physics: Conference Series 1341, 072009,1-9. doi: 10.1088/1742-6596/1341/7/072009.

Scoparo, C.T., de Souza, L.M., Dartora, N., Sassaki, G.L., Gorin, P.A., and Iacomini, M. (2012). Analysis of Camellia sinensis green and black teas via ultra high performance liquid chromatography assisted by liquid-liquid partition and two-dimensional liquid chromatography (size exclusion × reversed phase). J Chromatogr A 1222, 29-37. doi: 10.1016/j.chroma.2011.11.038.

Stone, N.D., O'Hara, C.M., Williams, P.P., McGowan, J.E., Jr., and Tenover, F.C. (2007). Comparison of disk diffusion, VITEK 2, and broth microdilution antimicrobial susceptibility test results for unusual species of Enterobacteriaceae. Journal Of Clinical Microbiology 45(2), 340-346. doi: 10.1128/JCM.01782-06.

Towse, A., Hoyle, C.K., Goodall, J., Hirsch, M., Mestre-Ferrandiz, J., and Rex, J.H. (2017). Time for a change in how new antibiotics are reimbursed: Development of an insurance framework for funding new antibiotics based on a policy of risk mitigation. Health Policy 121(10), 1025-1030. doi: 10.1016/j.healthpol.2017.07.011.

Veillet, S., Tomao, V., and Chemat, F. (2010). Ultrasound assisted maceration: An original procedure for direct aromatisation of olive oil with basil. Food Chemistry 123(3), 905-911. doi: https://doi.org/10.1016/j.foodchem.2010.05.005.




DOI: http://dx.doi.org/10.12928/pharmaciana.v11i1.16874

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Rezky Yanuarti, Sartini Sartini, Firzan Nainu

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


 
Pharmaciana
ISSN Print: 2088-4559 | ISSN Online: 2477-0256
Website: http://journal.uad.ac.id/index.php/PHARMACIANA
Office: Faculty of  Pharmacy, Universitas Ahmad Dahlan
Jl. Prof. Dr. Soepomo, S.H., Janturan, Warungboto, Umbulharjo, Yogyakarta, Indonesia
Kode pos 55164
Email: pharmaciana@pharm.uad.ac.id