Esterification of p-hydroxybenzoic acid with glucose using a γ-Al2O3/SO4 catalyst

Elfia Siska yasa Putri, Widajanti Wibowo, Soleh Kosela

Abstract


Esterification of p-hydroxybenzoic acid with glucose can be expected to produce esters. The rate of esterification reaction is usually very slow and, therefore, needs an acid catalyst to accelerate it. This research examined the performance of a heterogeneous catalyst made of γ-Al2O3 impregnated with a protic acid, H2SO4. The heterogeneous catalyst, γ-Al2O3/SO4, was characterized using XRD, XRF, and BET methods. The esterification reactions were conducted using dimethyl sulfoxide (DMSO) solvent at a temperature of 1000C and observed after they lasted for 1 to 24 hours (reaction time). The esterification of p-hydroxybenzoic acid with glucose used two catalysts, namely 3% SO42-/Al2O3 and 5% SO42-/Al2O3. The reaction products were analyzed using HPLC, IR, and LC-MS methods. The % yield was the highest at Hour 24 for both catalysts, while the % conversion fluctuated during the esterification time. The LC-MS showed that the three produced esters had molecular weights of 300, 420, and 540.


Keywords


esterification, p-hydroxybenzoic acid; glucose; SO42-/Al2O3 catalyst

Full Text:

PDF

References


Alvarez, M., Ortiz, M. J., Ropero, J. L., Nino, M. E., Rayon, R., Tzompantzi, F. and Gomez, R, 2009. Evaluation of Sulfated aluminas synthesized via the sol-gel method in the esterification of oleic acid with ethanol, Chem.Eng.Comm, 196(10)(February 2010): 1152–1162.

Fessenden, R. J. and Fessenden, J. S, 1989. Kimia Organik Jilid 2. 3rd edn. Jakarta: Erlangga.

Kiss, A. A., Dimian, A. C. and Rothenberg, G, 2008. Biodiesel by catalytic reactive distillation powered by metal oxides, Energy &Fuels, 22: 598–604.

Lo, D. E., Suwannakarn, K., Goodwin, J. G., Bruce, D. A. and Carolina, S, 2008. Reaction kinetics and mechanism for the gas- and liquid-phase esterification of acetic acid with methanol on tungstated zirconia, Ind.Eng.Chem.Res, 47(7)(2008): 2221–2230.

Miranda, B. C., Chimentão, R. J., Santos, J. B. O., Gispert-guirado, F., Llorca, J., Medina, F., Bonillo, F. L. and Sueiras, J. E, 2014.Conversion of glycerol over 10 % Ni/γ-Al2O3 catalyst, Applied Catalysis B: Environmental. Elsevier B.V., 147: 464–480.

Prasitturattanachai, W. and Nuithitikul, K, 2013. esterification of free fatty acids in crude palm oil using alumina-doped sulfated tin oxide as a catalyst, International Journal of Chemical and Molecular Engineering, 7(7): 821–825.

Pudi, S. M., Mondal, T., Biswas, P., Biswas, S. and Sinha, S, 2014.conversion of glycerol into value-added products over cu-ni catalyst supported on γ-al2o3 and activated carbon, International Journal of Chemical Reactor Engineering, 12(1): 1–12.

Ramli, A. and Farooq, M, 2015. Optimization of process parameters for the production of biodiesel from waste cooking oil in the presence of bifunctional ï§ -Al 2 O 3 -CeO 2 supported catalysts, Malaysian Journal of Analytical Sciences, 19(1): 8–19. Available at: http://www.ukm.my/mjas/v19_n1/pdf/Anita_19_1_2.pdf.

Rane, S. A, 2016. Esterification of glycerol with acetic acid over highly active and stable alumina-based catalysts: a reaction kinetics study, Chemical and Biochemical Engineering Quarterly Journal, 30(1): 33–45.

Sastrohamidjojo, H. (1992) Spektroskopi Inframerah. 1st edn. Edited by Sardjoko. Yogyakarta: Liberty.

Sastrohamidjojo, H, 2013. Dasar-dasar spektroskopi. Yogyakarta: Universitas Gadjah Mada Press. Available at: http://ugmpress.ugm.ac.id/id/product/kimia/dasar-dasar-spektroskopi.

Su, X., Li, J., Xiao, F., Wei, W. and Sun, Y, 2009. Esterification of salicylic acid with dimethyl carbonate over mesoporous aluminosilicate, Ind.Eng.Chem.Res, 48: 3685–3691.

Suwannakarn, K., Lotero, E. and Goodwin, J. G, 2007. Solid Brønsted Acid Catalysis in the Gas-Phase Esterification of Acetic Acid, Ind.Eng.Chem.Res, 46: 7050–7056.

Yu, G. X., Zhou, X. L., Li, C. L., Chen, L. F. and Wang, J. A, 2009. Esterification over rare earth oxide and alumina promoted SO42-/ZrO2’, 148: 169–173.

Zhang, L., Zhang, H.-T., Ying, W.-Y. and Fang, D.-Y, 2011. Intrinsic kinetic of methanol dehydration over Al2O3 Catalyst, World Academy of Science, Engineering and technology, 5(11):1538–1543.




DOI: http://dx.doi.org/10.12928/pharmaciana.v9i1.11892

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 elfia siska yasa putri, Widajanti Wibowo, Soleh Kosela

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


 
Pharmaciana
ISSN Print: 2088-4559 | ISSN Online: 2477-0256
Website: http://journal.uad.ac.id/index.php/PHARMACIANA
Office: Faculty of  Pharmacy, Universitas Ahmad Dahlan
Jl. Prof. Dr. Soepomo, S.H., Janturan, Warungboto, Umbulharjo, Yogyakarta, Indonesia
Kode pos 55164
Email: pharmaciana@pharm.uad.ac.id