
Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI)

Vol. 10, No. 2, June 2024, pp. 476-488

ISSN: 2338-3070, DOI: 10.26555/jiteki.v10i2.28973 476

Journal homepage: http://journal.uad.ac.id/index.php/JITEKI Email: jiteki@ee.uad.ac.id

Random Search-Based Parameter Optimization on Binary

Classifiers for Software Defect Prediction

Misbah Ali1, Muhammad Sohaib Azam2, Tariq Shahzad3
1Department of Computer Science and Information Technology, Virtual University, Lahore, Pakistan

2Department of Computer Science, COMSATS University Islamabad, Sahiwal Campus, Pakistan
3Department of Electrical and Electronic Engineering Science, University of Johannesburg, Johannesburg 2006, South

Africa.

ARTICLE INFO ABSTRACT

Article history:

Received June 04, 2024

Revised July 07, 2024
Published July 23, 2024

 Machine learning classifiers consist of a set of parameters. The efficiency of

these classifiers in the context of software defect prediction is greatly

impacted by the parameters chosen to execute the classifiers. These

parameters can be optimized to achieve more accurate results. In this

research, the efficiency of binary classifiers for software defect prediction is

analyzed through parameter optimization using random search technique.

Three heterogeneous binary classifiers i.e., Decision tree, Support vector

machine, and Naïve Bayes are selected to examine the results of parameter

optimization. The experiments were performed on seven publicly available

NASA Datasets. The dataset was split into 70-30 proportions with class

preservation. To evaluate the performance; five statistical measures have

been implemented i.e., precision, recall, F-Measure, the area under the curve

(AUC), and accuracy. The findings of the research revealed that there is

significant improvement in accuracy for each classifier. On average, decision

tree improved from 88.1% to 95.4%; support vector machine enhanced the

accuracy from 94.3% to 99.9%. While Naïve Bayes showed an accuracy

boost from 74.9% to 85.3%. This research contributes to the field of machine

learning by presenting comparative analysis of accuracy improvements using

default parameters and optimized parameters through random search. The

results presented that he performance of binary classifiers in the context of

software prediction can be enhanced to a great extent by employing parameter

optimization using random search.

Keywords:

Software Defect Prediction;

Software Metrics;
Machine Learning;

Classification;

Decision Tree;
Support Vector Machine;

Naïve Bayes

This work is licensed under a Creative Commons Attribution-Share Alike 4.0

Corresponding Author:

Misbah Ali, Department of Computer Science and Information Technology, Virtual University, Lahore,

Pakistan

Email: talktomisbah.ali@gmail.com

1. INTRODUCTION

A software defect refers to any deviation from the intended behavior of the software that diminishes its

overall quality. Identifying the defects at earlier stages of the software development life cycle (SDLC) is the

most crucial task as it saves a bundle of resources including time, money, and manpower [1]–[3]. In the past

two decades, the primary emphasis of researchers is to explore machine learning techniques for software defect

prediction [4]–[6]. There exist several defect prediction methods that can distinguish between defective and

non-defective software modules effectively. The state-of-the-art methods include deep learning, ensemble

learning, transfer learning, and active learning [7], [8]. Deep learning techniques mostly employ convolutional

neural networks, recurrent neural networks or graph-based learning; while ensemble learning techniques

integrate multiple classifiers as base models [9]–[11]. The efficiency of a system for predicting software defects

is subject to several factors. The main factor affecting the performance of software defect prediction models

that utilize machine learning methods; is the selection of the classification algorithms. There exist numerous

10.26555/jiteki.v10i2.28973
http://journal.uad.ac.id/index.php/JITEKI
http://jiteki@ee.uad.ac.id
https://creativecommons.org/licenses/by-sa/4.0/deed.id
https://creativecommons.org/licenses/by-sa/4.0/deed.id
mailto:talktomisbah.ali@gmail.com

ISSN: 2338-3070 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) 477

 Vol. 10, No. 2, June 2024, pp. 476-488

Random Search-Based Parameter Optimization on Binary Classifiers for Software Defect Prediction (Misbah Ali)

classifiers both supervised and unsupervised including random forest (RF), linear regression (LR), k-nearest

neighbor (KNN), and K-means clustering etc. that have been implemented by the researchers for software

defect prediction and induce noticeable results [12]. However in current research, supervised classification

techniques are preferred and implemented by researchers frequently for software defect prediction [13], [14].

The selection of an appropriate classifier also greatly influences the output of the defect prediction system.

Dissimilar types of classifiers can better analyze the problem and lead to unbiased results. The most commonly

used heterogeneous binary classifiers are Decision Tree (DT), Support Vector Machine (SVM), and Naïve

Bayes (NB) [10], [13], [15]. The computational mechanism of these three classifiers varies distinctly which

can analyze the classifiers effectively.

Machine learning classifiers comprise a set of parameters that direct the behavior of the classifiers. While

implementing the classifiers, the researchers can access individually configurable parameters and adjust them

to yield maximum results [16]–[18]. For example, in Linear Regression (LR), the value of the intercept can be

adjusted to get maximum performance. Similarly, in KNN; the number of nearest neighbors K can be optimized

[19], [20]. In recent times, many studies have taken place on parameter optimization that yields remarkable

output [21]. There exist several parameter optimization techniques including grid search, random search, and

Bayesian optimization [22], [23]. Grid search and Bayesian search methods are computationally expensive as

they perform exhaustive search and build probabilistic model respectively. So that all the possible

combinations of the parameters can be tried resulting in optimal results [24]. Whereas, random search offers a

simple method for parameter optimization which is computationally efficient specifically when resources are

limited [23].

Mostly, the researchers rely on default parameters which exhibit low accuracy for software defect

prediction frameworks. In this research, random search has been employed to analyze configurable parameters

of three heterogeneous binary classifiers namely DT, SVM, and NB. This optimization technique can be

generalized in several software defect prediction contexts leading to improved accuracy of defect prediction

frameworks. The behavior of classifiers is examined after optimizing the parameters using multiple statistical

measures. The experiments are performed on seven widely used clean versions of NASA datasets including

CM1, KC3, MC1, MC2, MW1, PC2, and PC3 [25]. The performance of the classifiers is measured using

frequently employed five performance measures including precision, recall, F-measure, AUC, and accuracy

[26].

This research makes the following contributions:

• Access the practical efficiency of random search method for parameter optimization

• Enhance the predictive power of software defect prediction systems by optimizing binary classifiers.

• Statistical analysis of the performance exhibited by the optimized binary classifiers.

2. RELATED WORK

Software defect prediction is a process of identifying and predicting potential defects or bugs in software

code before it is released to production. This can be done using various techniques such as static code analysis,

machine learning, and data mining. A hybrid framework for software defect prediction was developed, utilizing

feature classification with twelve NASA datasets. The study included two approaches, one utilizing feature

selection and the other without, both incorporating bagging and boosting techniques using a Random Forest

base classifier for improved accuracy [27]. Similarly, Balogun et al. conducted research on utilizing Filter

Feature Ranking and 14 different Filter Subset Selection techniques, using five NASA datasets and Best First

Search as an FS technique. They found that the Filter Subset Selection strategy resulted in improved prediction

accuracy and that Feature Filter Ranking methods were more reliable for prediction purposes [28]. Another

research was conducted to evaluate the efficiency of four different classifiers, all utilizing a back-propagation

approach, in the context of software defect prediction using NASA datasets. A comparison was made between

the performance of the fused artificial neural network-Bayesian regularization (ANN-BR) classifier and other

classifiers, using various NASA datasets. The results showed that the ANN-BR classifier performed

exceptionally well [29]. Iqbal et al. conducted research by using twelve NASA datasets, where three classifiers

were implemented and compared. The classifiers used in the study were Decision Tree (DT), Naive Bayes

(NB), and K-Nearest Neighbor (KNN), and results were analyzed using various performance measures. The

study found that the Naive Bayes classifier had an accuracy of 78.69%, while other classifiers such as

Multilayer Perceptron, Radial Basis Function, Support Vector Machine, K-Star, OneR, PART, Decision Tree,

and Random Forest had higher accuracy values ranging from 84.04% to 85.76% [30].

Parameter optimization is the practice of determining the optimal settings for the parameters of a

classifier. This is accomplished to enhance the efficiency and stability of the classifier [31]. Tantithamthavorn

et al. explored the application of automated techniques for adjusting the parameters of software defect

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&

478 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) ISSN: 2338-3070

 Vol. 10, No. 2, June 2024, pp. 476-488

Random Search-Based Parameter Optimization on Binary Classifiers for Software Defect Prediction (Misbah Ali)

prediction models. The authors investigated the classifiers’ efficiency and stability, parameter transferability,

computational cost, and ranking of the different classifying methods when applying these techniques. They

assessed 26 widely-utilized classification methods using 12 metrics of performance across 18 datasets derived

from both proprietary and open-source systems. They found that optimization improves the performance of

defect prediction models by up to forty percent and that the significance of adjusting parameters should be

cautiously evaluated when selecting a technique for defect prediction studies [32]. The effects of applying

hyperparameter optimization (HO) on ensemble learning algorithms for defect prediction performance were

examined by Muhammed Maruf ¨Ozt¨urk [33]. A new ensemble learning algorithm called novel-Ensemble

was presented and tested on 27 data sets, and compared with three alternatives. The results showed that

ensemble methods featuring HO perform better than a single predictor, and the novel Ensemble yields

promising results. The study also revealed that the success of HO is not dependent on the type of classifiers,

but rather on the design of ensemble learners. A Hyper-Parameter Optimization technique for Classifiers in

context of software defect prediction was explored by Khan et al. Using an Artificial Immune Network. The

study found that utilizing AIN and its applications for predicting software bugs in machine learning classifiers

improved performance when compared to using classifiers with their default hyper-parameters [34]. Mabayoje

et al. examined the effect of parameter tuning on the k-NN algorithm in software defect prediction. They found

that using a k value greater than 1 improved the average RMSE values. Using distance weighting also improved

predictive performance by 8.82% and 1.7% based on AUC and accuracy respectively. Overall, parameter

tuning was found to have a progressive impact on the predictive performance of k-NN in SDP [19]. Kang et

al. discussed software quality assurance (SQA) in ships, where the safety-critical nature of ships makes SQA

a fundamental prerequisite. The study presents a method called Just-in-time software defect prediction (JIT-

SDP), which conducts software defect prediction on commit-level code changes to reach efficient SQA

resource distribution. The study found that by applying an optimization algorithm called Harmony search (HS)

to JIT-SDP, the prediction performance can be improved [31]. Smithson et al. analyzed the performance of

Neural Networks based upon Hyper-Parameter Optimization and revealed that Hyper-parameters, such as the

number of hidden layers and nodes per layer, play a crucial role in the performance and computational

complexity of such models. Traditionally, these hyper-parameters have been optimized manually. To address

this, a multi-objective design space exploration method was presented that reduced the number of solution

networks trained and evaluated through response surface modeling [35]. The detection of code smells was

examined by Shen et al. The researcher used hyper-parameter optimization techniques to enhance the

efficiency of these methods specifically looking at two types of code smells (Data Class and Feature Envy)

and using four different optimizers and six commonly used classifiers. The study finds that the use of hyper-

parameter optimization considerably advances the efficiency of code smell detection and that the Differential

Evolution optimizer is particularly effective when used with the Random Forest classifier [36]. Another

framework was proposed for optimizing energy consumption in the distillation process using parameter

optimization techniques [21]. The predictive framework consisted of three steps: learning, validation and

improvement. It was witnessed that the framework performance is enhanced by optimizing its hyper-

parameters. Researchers also explored the use of an alternative method, GHOST, for detecting code smells in

order to reduce complexities and make code more maintainable. GHOST is a fusion of hyper-parameter

optimization of feed forward neural networks and an innovative oversampling technique called "fuzzy

sampling". The researchers suggested that this technique could be useful in other types of analytics as well

[37].

3. MATERIALS and METHODS

This research examines the performance of binary classifiers using random search based upon default

parameters and optimized parameters. It suggests the optimal parameters that contribute significantly towards

the effectiveness of software defect prediction frameworks. The research consists of 3 stages: 1) Dataset

selection 2) Classification through parameter optimization 3) Performance evaluation. This research has been

conducted in two dimensions; first, the parameter optimization is skipped and the datasets are supplied directly

to the classification algorithms. Whereas in the second dimension, the default parameters of the classifiers are

first optimized using random search method and then configured within the classifiers. Hence, they yield

maximum results for the selected datasets within the realm of predicting software defects or faults or bugs.

The results achieved from both dimensions are compared using various statistical measures. The experiments

have been performed using MATLAB a widely-used machine learning tool, which yields reliable outcomes.

Fig. 1. shows a flowchart of the proposed methodology.

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&

ISSN: 2338-3070 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) 479

 Vol. 10, No. 2, June 2024, pp. 476-488

Random Search-Based Parameter Optimization on Binary Classifiers for Software Defect Prediction (Misbah Ali)

Fig. 1. Flowchart of proposed methodology [created using DALL-E]

3.1. Dataset Selection

In the first stage of this research, the dataset is selected. NASA datasets are the most widely used publicly

available datasets that have been utilized by various researchers [38]. These datasets were analyzed by

Shepperd et al. that produced two advanced versions of the datasets after passing them through a cleaning

process i.e., D’ and D’’. D’ version contains identical and inconsistent instances whereas D’’ excludes all the

inconsistent and duplicate instances. The criteria employed to preprocess and clean the datasets is mentioned

in [39]. These datasets contain historical data of real-world software projects developed in different languages

i.e. C++, Java, Perl, etc.[40]. This study has selected seven NASA datasets including CM1, KC3, MC1, MC2,

MW1, PC2, and PC3. CM1 and KC3 belong to spacecraft instrument project, MC1 and MC2 present the

mission control system, MW1 represents ground-based system related to zero-gravity features; and PC2, PC3

show features belonging to a science data processing system [41], [42]. The datasets comprise various quality

metrics of the software in the form of independent attributes including LOCEXECUTABLE,

MULTIPLECONDITIONCOUNT, and LOCTOTAL, etc. and one dependent attribute called the target

attribute that tells whether a particular module in the dataset is defective or non-defective. The target attribute

is predicted based on independent attributes. The value of the target attribute is either “Y” or “N”; where “Y”

represents the respective module has defects and “N” represents that the respective module doesn’t have

defects [19], [43], [44]. In this research, a clean version of NASA datasets D’’ is utilized and the performance

of the binary classifiers is analyzed. Table 1 presents the datasets employed in this research.

Table 1. Details of NASA Datasets
Dataset Modules Attributes Language Defective Non-

Defective

Defective% Description

CM1 38 327 C 42 285 12.8
Spacecraft

instrument

KC3 40 194 JAVA 36 158 18.5
Spacecraft

instrument

MC1 39 1952 C/C++ 36 1916 1.8 Mission control

MC2 40 124 C 44 80 35.4 Mission control

MW1 38 250 C 25 225 10 ground-based

PC2 37 722 C 16 706 2.2 science data

PC3 38 1,053 C 130 923 12.3 science data

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&

480 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) ISSN: 2338-3070

 Vol. 10, No. 2, June 2024, pp. 476-488

Random Search-Based Parameter Optimization on Binary Classifiers for Software Defect Prediction (Misbah Ali)

3.2. Classification using optimized parameters

In the second stage, the selection of binary classifiers is made and their parameters are optimized through

random search. Parameter optimization which is also referred as hyperparameter tuning; is the process of

finding the optimal combination of configurable parameters that produce maximum results. These parameters

are optimized before model training and the performance is enhanced through an iterative optimization process.

The integration of optimized parameters into machine learning model produces a robust and generalized model

that exhibits significant performance [45].

Parameter optimization is a complex process which is greatly influenced by the number of parameters to

optimize, range of parameters to be explored, the complexity of selected machine learning model, dataset size,

and optimization technique. As the number of parameters, model complexity, or the dataset size increases,

parameter optimization tends to become a more computationally complex process which demands more

resources. In this study, random search has been selected as a parameter optimization technique due to its

simplicity and less demand of resources [46].

Random search: Random search is a straightforward and efficient parameter optimization technique that

explores the configurable parameters of machine learning algorithms using trial-and-error method [47]. The

first step of random search involves identification of configurable parameters of a classifier. In the second step,

the parameter optimization space is explored i.e., the analysis of possible values to be supplied to parameters

to achieve optimal result. In the third step, a random combination of configurable parameters is sampled and

the model is trained over that combination. In the fourth step, the results are analyzed using selected

performance measures. in the fifth step, these results are optimized using various combinations of parameters.

This process is repeated until optimal results are achieved [46], [48]. In the final step, the most suitable

combination of parameters is identified and selected for classification. A step-by-step approach to execute

random search is shown in Fig. 2.

Fig. 2. step-by-step process of random search execution

Three binary classifiers of heterogeneous nature have been implemented in this research. The details of

the classifiers are given as follows.

Decision Tree (DT): DT is a widely used binary classifier that follows a hierarchical structure consisting

of root nodes, intermediate nodes, and terminal nodes [49]. It’s a robust algorithm that runs efficiently for

binary classification problems [50]. The root node holds all the instances that are to classify. Classification is

accomplished by running several tests on the root and intermediate nodes. Based on the results of the tests

achieved, the leaf node holds the output class label.

DT consists of several parameters including the MinLeafSize , MinParentSize , maximum number of

splits, MaxDepth, and split criterion. The configurable parameters for optimized performance are identified

as maximum number of splits and split criterion. DT shows the optimal performance when the “maximum

number of splits” parameter is set as “50” and the “split criterion” parameter is kept as “Gini’s diversity

index”.

Support Vector Machine (SVM): SVM makes use of support vectors and a hyperplane for classification

[51]. It’s an extensively used binary classifier that produces effective results with the help of a hyperplane by

drawing a boundary that separates the classes. SVM has several parameters including kernel function, Box

constraint level, PolynomialOrder , and kernel scale. SVM performs well when the “kernel function” parameter

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&

ISSN: 2338-3070 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) 481

 Vol. 10, No. 2, June 2024, pp. 476-488

Random Search-Based Parameter Optimization on Binary Classifiers for Software Defect Prediction (Misbah Ali)

is chosen as “Quadratic” and the “Box constraint level” parameter is kept as “2”.

Naïve Bayes (NB): NB is a probability-driven binary classification algorithm. It executes by assuming

that there doesn’t exist any dependency between dataset attributes. It executes remarkably to cope with data

imbalance issues [52]. It has several parameters including width, support, distribution names, and kernel type.

Tuning parameters of NB include Distribution names and kernel type. NB produces optimal results when the

“Distribution names” parameter is set as “kernel” and the “kernel type” is “Gaussian”. The parameters detail

of all the selected classifiers is shown in Table 2. Finally, the third and the last stage reflect the results achieved

after a comparative analysis of default and optimized classifiers. An overview of the proposed methodology is

shown in Fig. 3. The research results are described in the next section.

Table 2. Optimized parameters for binary classifiers
Classifier Optimized parameters Values

Decision tree
maximum number of splits 50

split criterion Gini’s diversity index

Support vector machine

kernel function Quadratic

Box constraint level 2

Naïve Bayes

Distribution names kernel

kernel type Gaussian

Fig. 3. Overview of the Proposed Methodology

4. RESULTS AND DISCUSSION

In this section, the findings of the experiments are examined. The proposed approach was validated a

widely used 10-fold cross validation methodology which produced effective results. The performance of the

optimized classifiers is evaluated through the most commonly used performance measures including precision,

recall, F-measure, AUC, and accuracy [53] with the main focus on the accuracy; since it presents the overall

effectiveness of the proposed approach. The research considered using these measures as they

comprehensively capture the behavior of binary classifiers [54], [55]. Precision and recall present the

correctness of defective modules predicted by the classifier. Whereas, f-measure shows the balance between

correct and incorrect predictions. Accuracy is the most crucial measure which demonstrates the overall correct

predictions (defective/non-defective modules) of a classifier. AUC differentiates between defective and non-

defective modules based on the predictions of a classifier. The higher the values of all these measures, the

better the performance of the classifier [54], [56]. All the measures are derived using the confusion matrix

shown in Table 3.

Table 3. Confusion Matrix
 Classified Defective Classified Non-Defective

Actual Defective TP FN

Actual Non-Defective FP TN

A confusion matrix is a technique widely implemented by researchers to evaluate the performance of

classifiers [57]. The performance of both dimensions of the research is analyzed through a confusion matrix.

It has four parameters as listed below:

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&

482 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) ISSN: 2338-3070

 Vol. 10, No. 2, June 2024, pp. 476-488

Random Search-Based Parameter Optimization on Binary Classifiers for Software Defect Prediction (Misbah Ali)

1. True Positive (TP): This parameter holds the instances that are defective and also classifies them as

defective. False Positive (FP): This parameter holds instances that are non-defective but incorrectly

classified as defective.

2. False Negative (FN): This parameter holds the instances that are defective but classified as non-defective.

3. True Negative: This parameter holds instances that are non-defective and also categorized as negative.

The performance measures are derived in equation forms from the confusion matrix:

Precision =

TP

TP + FP

(1)

Recall =

TN

TN + FP

(2)

F − measure =

2 ∗ Recall ∗ Precision

Recall + Precision

(3)

𝐴𝑈𝐶 − 𝑅𝑂𝐶 =

1 + 𝑇𝑃𝑟 − 𝐹𝑃𝑟

2

(4)

Accuracy =

(TP + TN)

(TP + TN + FP + FN)

(5)

The classification was performed in two dimensions: 1) With default parameters and 2) With optimized

parameters. In the first dimension, the datasets are supplied to the classifiers with default parameters; whereas

in the second dimension, the datasets are supplied to the classifiers having optimized parameters. The below

tables reflect the results of the research in both dimensions. Table 4 – Table 10 reflect the results of each dataset

achieved by executing classifiers with optimized parameters.

Table 4. CM1 Dataset Results
Classifier Precision Recall Accuracy % F-Measure AUC

DT 0.833 0.769 94.9 0.8 0.873

SVM 1 1 100 1 1

NB 0.471 0.615 85.9 0.533 0.755

Table 5. KC3 Dataset Results
Classifier Precision Recall Accuracy % F-Measure AUC

DT 0.9 0.818 94.9 0.857 0.899

SVM 1 1 100 1 1

NB 0.5 0.455 81.4 0.476 0.675

Table 6. MC1 Dataset Results
Classifier Precision Recall Accuracy % F-Measure AUC

DT 0.778 0.636 99 0.7 0.816

SVM 1 0.909 99.8 0.952 0.955

NB 0.286 0.545 96.6 0.375 0.759

Table 7. MC2 Dataset Results
Classifier Precision Recall Accuracy % F-Measure AUC

DT 0.8 0.923 89.5 0.857 0.902

SVM 1 1 100 1 1

NB 1 0.462 81.6 0.632 0.731

Table 8. MW1 Dataset Results
Classifier Precision Recall Accuracy % F-Measure AUC

DT 0.889 1 98.7 0.941 0.993

SVM 1 1 100 1 1

NB 0.467 0.875 88 0.609 0.878

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&

ISSN: 2338-3070 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) 483

 Vol. 10, No. 2, June 2024, pp. 476-488

Random Search-Based Parameter Optimization on Binary Classifiers for Software Defect Prediction (Misbah Ali)

Table 9. PC2 Dataset Results
Classifier Precision Recall Accuracy % F-Measure AUC

DT 1 0.2 98.2 0.333 0.6

SVM 1 1 100 1 1

NB 0.12 0.6 88.9 0.2 0.748

Table 10. PC3 Dataset Results
Classifier Precision Recall Accuracy % F-Measure AUC

DT 1 0.795 97.5 0.886 0.898

SVM 1 1 100 1 1

NB 0.287 0.692 75 0.406 0.725

4.1. Comparative analysis

The integration of optimized parameters shows a substantial improvement in the prediction accuracy of

the classifiers. Table 11 represents the results of both dimensions; accuracy achieved from classifiers with

default parameters, and optimized parameters. Decision tree shows accuracy improvement for all datasets with

maximum accuracy improved from 81.4% to 91.9% for MC2 dataset. Similarly, support vector machine

exhibits enhanced accuracy for all datasets with most optimal results for PC3 dataset with an improvement

from 89.2% to 100%. The significant accuracy results for both decision tree and support vector machine reflect

that both the classifiers are sensitive to parameter optimization. However, naïve bayes shows varied

performance across datasets after parameter optimization. It shows a maximum accuracy boost from 20.6% to

75% for PC3 dataset. The minimum accuracy increase is for CM1 dataset where accuracy increased from

84.8% to 85.9%. It is also evident that the accuracy remains same for KC3 dataset i.e., 81.4% demonstrating

that the optimization technique didn’t affect the simplicity of the naïve bayes classifier. It can also be seen

that naïve bayes doesn’t produce results for MC1 and MW1 datasets in their default configurations. It is

because these datasets show zero or approaching to zero variance in features across all the instances. Since

naïve bayes works on the principle of probability, and it relies on variance of features for probability calculation

[58]. Fig. 4 shows a DT-based accuracy comparison of the default classifier and optimized classifier for all

datasets. Fig. 5 shows an SVM-based accuracy comparison of the default classifier and optimized classifier for

all datasets. Fig. 6 shows an NB-based accuracy comparison of the default classifier and optimized classifier

for all datasets. Fig. 7 shows the AUC comparison with default classifiers for all datasets. Fig. 8 shows the AUC

comparison with optimized classifiers for all datasets.

Table 11. Result of parameter optimization using accuracy

D
a

ta
se

t

CM1 KC3 MC1

MC2

MW1

PC2

PC3

C
la

ss
if

ie
r

O
p

ti
m

iz
ed

D
ef

a
u

lt

D
ef

a
u

lt

O
p

ti
m

iz
ed

D
ef

a
u

lt

O
p

ti
m

iz
ed

D
ef

a
u

lt

O
p

ti
m

iz
ed

D
ef

a
u

lt

O
p

ti
m

iz
ed

D
ef

a
u

lt

O
p

ti
m

iz
ed

D
ef

a
u

lt

O
p

ti
m

iz
ed

DT 86 94 81.4 94.9 98.3 99 76.3 89.5 89.3 98.7 97.7 98.2 87.7 97.5

SVM 91.9 100 94.9 100 98.3 99 89.5 100 98.7 100 97.7 100 89.2 100

NB 84.8 85.9 81.4 81.4 - 96.6 73.7 81.6 - 88 86.2 88.9 20.6 75

Fig. 4. Accuracy comparison of default and optimized parameters for DT

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&

484 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) ISSN: 2338-3070

 Vol. 10, No. 2, June 2024, pp. 476-488

Random Search-Based Parameter Optimization on Binary Classifiers for Software Defect Prediction (Misbah Ali)

Fig. 5. Accuracy comparison of default and optimized parameters for SVM

Fig. 6. Accuracy comparison of default and optimized parameters for NB

Fig. 7. Default AUC comparison of DT, SVM, and NB

This study has utilized seven diverse defect datasets belonging to NASA matric dataset program. These

datasets have been derived from real-world projects that were developed using multiple programming

languages including C, C++, and JAVA. Hence, the findings of the study can be effectively applied to other

defect datasets from Eclipse, AEEEM, PROMISE or ReLink repositories [59]–[61]. These finding can also be

applied to other defect prediction contexts i.e. within -project/cross-project defect prediction, and cross version

defect prediction considering the dataset size, class-balanced ratio and the model complexity, and [62].

Fig. 8. Optimized AUC comparison of DT, SVM, and NB

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&

ISSN: 2338-3070 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) 485

 Vol. 10, No. 2, June 2024, pp. 476-488

Random Search-Based Parameter Optimization on Binary Classifiers for Software Defect Prediction (Misbah Ali)

4.2. Limitations

While the proposed methodology highlights the significant role of random search for parameter

optimization for software defect prediction, there are some limitations associated with it as well. The

experiments are specific to NASA defect datasets, the proposed methodology may deviate from the expected

results on other defect datasets. The quality of the selected dataset is another concern to execute the proposed

methodology. The study selected already preprocessed, clean version of NASA defect dataset [39]. Moreover,

while performing experiments, the class-imbalance problem has not been addressed to maintain the originality

of the datasets. This problem can lead to biased results. Addressing these limitations can enhance the efficiency

of random search-based parameter optimization for binary classifiers.

5. CONCLUSION

Parameter optimization is a crucial aspect to enhance the efficiency of machine learning classifiers. The

study aimed to systematically analyze and optimize the performance of machine learning classifiers using

random search. This research presented the impact of parameter optimization on three heterogonous binary

classifiers namely DT, SVM, and NB. The experiments were performed using a clean version of seven publicly

available NASA datasets. The research was carried out in two dimensions; one with default classifiers and the

second with optimized classifiers. The efficiency of the resultant classifiers was accessed using five

performance measures i.e., precision, recall, F-measure, AUC, and accuracy. Results exhibit that the optimized

classifiers outperform default classifiers. Hence. random search can help to identify the optimal parameters of

binary classifiers leading to produce enhanced performance. The results reveal that random search can improve

prediction accuracy, robustness, and generalization of binary classifiers. It is particularly useful when there is

high-dimensional parameter space where grid-search or other searching techniques become impractical. By

timely identifying potential software defects, organizations can do risk management and save their time,

money, and manpower.

For future work, it is recommended that the resampling technique such as Synthetic Minority Over-

sampling Technique (SMOTE) along with the feature selection using genetic algorithm should be applied to

NASA datasets before experimenting with parameter optimization to attain improved results.

REFERENCES
[1] K. Wang, L. Liu, C. Yuan, and Z. Wang, “Software defect prediction model based on LASSO–SVM,” Neural Comput

& Applic, vol. 33, no. 14, pp. 8249–8259, Jul. 2021, https://doi.org/10.1007/s00521-020-04960-1.

[2] M. Ali et al., “Software Defect Prediction Using an Intelligent Ensemble-Based Model,” IEEE Access, vol. 12, pp.

20376–20395, 2024, https://doi.org/10.1109/ACCESS.2024.3358201.

[3] M. Ali, “Optimizing Software Defect Prediction: A Genetic Algorithm Based Comparative Analysis,” International

Journal of Computational and Innovative Sciences-http://ijcis.com/index.php/IJCIS/article/view/86, vol. 2, no. 4, pp.

56–73, 2024, https://ijcis.com/index.php/IJCIS/article/view/86.

[4] A. T. Elbosaty, W. M. Abdelmoez, and E. Elfakharany, “Within-Project Defect Prediction Using Improved CNN

Model via Extracting the Source Code Features,” in 2022 International Arab Conference on Information Technology

(ACIT), pp. 1–8, 2022, https://doi.org/10.1109/ACIT57182.2022.9994220.

[5] U. S. Bhutamapuram and R. Sadam, “With-in-project defect prediction using bootstrap aggregation based diverse

ensemble learning technique,” Journal of King Saud University - Computer and Information Sciences, vol. 34, no.

10, pp. 8675–8691, Nov. 2022, https://doi.org/10.1016/j.jksuci.2021.09.010.

[6] N. Zhang, S. Ying, W. Ding, K. Zhu, and D. Zhu, “WGNCS: A robust hybrid cross-version defect model via multi-

objective optimization and deep enhanced feature representation,” Information Sciences, vol. 570, pp. 545–576, Sep.

2021, https://doi.org/10.1016/j.ins.2021.05.008.

[7] A. Soni, “Graph-Based and Anomaly Detection Learning Models for Just-in-Time Defect Prediction,” TRACE, 2024,

Accessed: Jul. 03, 2024. [Online]. Available: https://trace.tennessee.edu/utkgraddiss/10168/.

[8] C. Zhang and J. Wu, “Software Defect Prediction Based On Effective Fusion Of Multiple Features,” IEEE Access,

2024, Accessed: Jul. 03, 2024. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/10549525/.

[9] M. Nevendra and P. Singh, “Defect count prediction via metric-based convolutional neural network,” Neural Comput

& Applic, vol. 33, no. 22, pp. 15319–15344, Nov. 2021, https://doi.org/10.1007/s00521-021-06158-5.

[10] M. Ali, T. Mazhar, A. Al-Rasheed, T. Shahzad, Y. Yasin Ghadi, and M. Amir Khan, “Enhancing software defect

prediction: a framework with improved feature selection and ensemble machine learning,” PeerJ Computer Science,

vol. 10, p. e1860, Feb. 2024, https://doi.org/10.7717/peerj-cs.1860.

[11] A. J. Anju and J. E. Judith, “Adaptive recurrent neural network for software defect prediction with the aid of quantum

theory- particle swarm optimization,” Multimed Tools Appl, vol. 82, no. 11, pp. 16257–16278, May 2023,

https://doi.org/10.1007/s11042-022-14065-7.

[12] H. Aljamaan and A. Alazba, “Software defect prediction using tree-based ensembles,” in Proceedings of the 16th

ACM International Conference on Predictive Models and Data Analytics in Software Engineering, pp. 1–10, Nov.

2020, https://doi.org/10.1145/3416508.3417114.

[13] M. Ali et al., “Analysis of Feature Selection methods in Software Defect Prediction Models,” IEEE Access, pp.

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&
https://doi.org/10.1007/s00521-020-04960-1
https://doi.org/10.1109/ACCESS.2024.3358201
https://ijcis.com/index.php/IJCIS/article/view/86
https://doi.org/10.1109/ACIT57182.2022.9994220
https://doi.org/10.1016/j.jksuci.2021.09.010
https://doi.org/10.1016/j.ins.2021.05.008
https://trace.tennessee.edu/utk_graddiss/10168/
https://ieeexplore.ieee.org/abstract/document/10549525/
https://doi.org/10.1007/s11042-022-14065-7
https://doi.org/10.1145/3416508.3417114

486 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) ISSN: 2338-3070

 Vol. 10, No. 2, June 2024, pp. 476-488

Random Search-Based Parameter Optimization on Binary Classifiers for Software Defect Prediction (Misbah Ali)

145954–145974, 2023, https://doi.org/10.1109/ACCESS.2023.3343249.

[14] C. Watson, N. Cooper, D. N. Palacio, K. Moran, and D. Poshyvanyk, “A Systematic Literature Review on the Use of

Deep Learning in Software Engineering Research,” ACM Trans. Softw. Eng. Methodol., vol. 31, no. 2, pp. 1–58, Apr.

2022, https://doi.org/10.1145/3485275.

[15] S. Y. Kim and A. Upneja, “Majority voting ensemble with a decision trees for business failure prediction during

economic downturns,” Journal of Innovation & Knowledge, vol. 6, no. 2, pp. 112–123, Apr. 2021,

https://doi.org/10.1016/j.jik.2021.01.001.

[16] J. Deng, L. Lu, and S. Qiu, “Software defect prediction via LSTM,” IET softw., vol. 14, no. 4, pp. 443–450, Aug.

2020, https://doi.org/10.1049/iet-sen.2019.0149.

[17] C. Peng, X. Wu, W. Yuan, X. Zhang, Y. Zhang, and Y. Li, “MGRFE: Multilayer Recursive Feature Elimination Based

on an Embedded Genetic Algorithm for Cancer Classification,” IEEE/ACM Trans. Comput. Biol. and Bioinf., vol. 18,

no. 2, pp. 621–632, Mar. 2021, https://doi.org/10.1109/TCBB.2019.2921961.

[18] X. Liu et al., “Adapting Feature Selection Algorithms for the Classification of Chinese Texts,” Systems, vol. 11, no.

9, p. 483, Sep. 2023, https://doi.org/10.3390/systems11090483.

[19] M. A. Mabayoje, A. O. Balogun, H. A. Jibril, J. O. Atoyebi, H. A. Mojeed, and V. E. Adeyemo, “Parameter tuning in

KNN for software defect prediction: an empirical analysis,” Jurnal Teknologi dan Sistem Komputer, vol. 7, no. 4, pp.

121–126, Oct. 2019, https://doi.org/ 10.14710/jtsiskom.7.4.2019.121-126.

[20] C. Ni, K. Yang, Y. Zhu, X. Chen, and X. Yang, “Unifying Defect Prediction, Categorization, and Repair by Multi-

Task Deep Learning,” in 2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE),

Luxembourg, Luxembourg: IEEE, Sep. 2023, pp. 1980–1992. https://doi.org/10.1109/ASE56229.2023.00083.

[21] H. Park, H. Kwon, H. Cho, and J. Kim, “A framework for energy optimization of distillation process using machine

learning‐based predictive model,” Energy Science & Engineering, vol. 10, no. 6, pp. 1913–1924, Jun. 2022,

https://doi.org/10.1002/ese3.1134.

[22] E. K. Yilmaz and H. Bakir, “Hyperparameter tunning and feature selection methods for malware detection,” Politeknik

Dergisi, pp. 1–1, 2023, https://trace.tennessee.edu/utk_graddiss/10168/.

[23] Y. A. Ali, E. M. Awwad, M. Al-Razgan, and A. Maarouf, “Hyperparameter search for machine learning algorithms

for optimizing the computational complexity,” Processes, vol. 11, no. 2, p. 349, 2023,

https://doi.org/10.3390/pr11020349.

[24] B. Bischl et al., “Hyperparameter optimization: Foundations, algorithms, best practices, and open challenges,” WIREs

Data Min & Knowl, vol. 13, no. 2, p. e1484, Mar. 2023, https://doi.org/10.1002/widm.1484.

[25] H. Alsawalqah et al., “Software Defect Prediction Using Heterogeneous Ensemble Classification Based on

Segmented Patterns,” Applied Sciences, vol. 10, no. 5, p. 1745, Mar. 2020, https://doi.org/10.3390/app10051745.

[26] H. S. Yadav, “Increasing Accuracy of Software Defect Prediction using 1-dimensional CNN with SVM,” in 2020

IEEE International Conference for Innovation in Technology (INOCON), pp. 1–6, Nov. 2020,

https://doi.org/10.1109/INOCON50539.2020.9298189.

[27] A. Iqbal, S. Aftab, I. Ullah, M. Salman Bashir, and M. Anwaar Saeed, “A Feature Selection based Ensemble

Classification Framework for Software Defect Prediction,” IJMECS, vol. 11, no. 9, pp. 54–64, Sep. 2019,

https://doi.org/10.5815/ijmecs.2019.09.06.

[28] A. O. Balogun, S. Basri, S. J. Abdulkadir, and A. S. Hashim, “Performance Analysis of Feature Selection Methods in

Software Defect Prediction: A Search Method Approach,” Applied Sciences, vol. 9, no. 13, p. 2764, Jul. 2019,

https://doi.org/10.3390/app9132764.

[29] M. S. Daoud et al., “Machine Learning Empowered Software Defect Prediction System,” Intelligent Automation &

Soft Computing, vol. 31, no. 2, pp. 1287–1300, 2022, https://doi.org/10.32604/iasc.2022.020362.

[30] A. Iqbal et al., “Performance Analysis of Machine Learning Techniques on Software Defect Prediction using NASA

Datasets,” IJACSA, vol. 10, no. 5, 2019, https://doi.org/10.14569/IJACSA.2019.0100538.

[31] J. Kang, S. Kwon, D. Ryu, and J. Baik, “HASPO: Harmony Search-Based Parameter Optimization for Just-in-Time

Software Defect Prediction in Maritime Software,” Applied Sciences, vol. 11, no. 5, p. 2002, Feb. 2021,

https://doi.org/10.3390/app11052002.

[32] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Matsumoto, “The Impact of Automated Parameter

Optimization on Defect Prediction Models,” IIEEE Trans. Software Eng., vol. 45, no. 7, pp. 683–711, Jul. 2019,

https://doi.org/10.1109/TSE.2018.2794977.

[33] O. M. Maruf, “The impact of parameter optimization of ensemble learning on defect prediction,” Computer Science

Journal of Moldova, vol. 79, no. 1, pp. 85-128, 2019, https://ibn.idsi.md/vizualizare_articol/78371.

[34] F. Khan, S. Kanwal, S. Alamri, and B. Mumtaz, “Hyper-Parameter Optimization of Classifiers, Using an Artificial

Immune Network and Its Application to Software Bug Prediction,” IEEE Access, vol. 8, pp. 20954–20964, 2020,

https://doi.org/10.1109/ACCESS.2020.2968362.

[35] S. C. Smithson, G. Yang, W. J. Gross, and B. H. Meyer, “Neural networks designing neural networks: multi-objective

hyper-parameter optimization,” in Proceedings of the 35th International Conference on Computer-Aided Design, pp.

1–8, Nov. 2016, https://doi.org/10.1145/2966986.2967058.

[36] L. Shen, W. Liu, X. Chen, Q. Gu, and X. Liu, “Improving Machine Learning-Based Code Smell Detection via Hyper-

Parameter Optimization,” in 2020 27th Asia-Pacific Software Engineering Conference (APSEC), pp. 276–285, Dec.

2020, https://doi.org/10.1109/APSEC51365.2020.00036.

[37] R. Yedida and T. Menzies, “How to improve deep learning for software analytics: (a case study with code smell

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&
https://doi.org/10.1109/ACCESS.2023.3343249
https://doi.org/10.1145/3485275
https://doi.org/10.1016/j.jik.2021.01.001
https://doi.org/10.1049/iet-sen.2019.0149
https://doi.org/10.1109/TCBB.2019.2921961
https://doi.org/10.3390/systems11090483
https://doi.org/%2010.14710/jtsiskom.7.4.2019.121-126
https://doi.org/10.1109/ASE56229.2023.00083
https://doi.org/10.1002/ese3.1134
https://trace.tennessee.edu/utk_graddiss/10168/
https://doi.org/10.3390/pr11020349
https://doi.org/10.1002/widm.1484
https://doi.org/10.3390/app10051745
https://doi.org/10.1109/INOCON50539.2020.9298189
https://doi.org/10.5815/ijmecs.2019.09.06
https://doi.org/10.3390/app9132764
https://doi.org/10.32604/iasc.2022.020362
https://doi.org/10.3390/app11052002
https://doi.org/10.1109/TSE.2018.2794977
https://ibn.idsi.md/vizualizare_articol/78371.
https://doi.org/10.1109/ACCESS.2020.2968362
https://doi.org/10.1145/2966986.2967058
https://doi.org/10.1109/APSEC51365.2020.00036

ISSN: 2338-3070 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) 487

 Vol. 10, No. 2, June 2024, pp. 476-488

Random Search-Based Parameter Optimization on Binary Classifiers for Software Defect Prediction (Misbah Ali)

detection),” in Proceedings of the 19th International Conference on Mining Software Repositories, pp. 156–166, May

2022, https://doi.org/10.1145/3524842.3528458.

[38] A. O. Balogun et al., “Software Defect Prediction Using Wrapper Feature Selection Based on Dynamic Re-Ranking

Strategy,” Symmetry, vol. 13, no. 11, p. 2166, Nov. 2021, https://doi.org/10.3390/sym13112166.

[39] M. Shepperd, Q. Song, Z. Sun, and C. Mair, “Data Quality: Some Comments on the NASA Software Defect

Datasets,” IIEEE Trans. Software Eng., vol. 39, no. 9, pp. 1208–1215, Sep. 2013,

https://doi.org/10.1109/TSE.2013.11.

[40] M. Cetiner and O. K. Sahingoz, “A Comparative Analysis for Machine Learning based Software Defect Prediction

Systems,” in 2020 11th International Conference on Computing, Communication and Networking Technologies

(ICCCNT), pp. 1–7, Jul. 2020, https://doi.org/10.1109/ICCCNT49239.2020.9225352.

[41] O. A. Qasem, M. Akour, and M. Alenezi, “The Influence of Deep Learning Algorithms Factors in Software Fault

Prediction,” IEEE Access, vol. 8, pp. 63945–63960, 2020, https://doi.org/10.1109/ACCESS.2020.2985290.

[42] A. J. Anju and J. E. Judith, “A reliable impact factor for feature Selection,” presented at the International Scientific

And Practical Conference “Innovative Technologies In Agriculture,” Orel City, Russian Federation, p. 020004, 2023,

https://doi.org/10.1063/5.0170391.

[43] R. Yedida and T. Menzies, “On the Value of Oversampling for Deep Learning in Software Defect Prediction,” IIEEE

Trans. Software Eng., vol. 48, no. 8, pp. 3103–3116, Aug. 2022, https://doi.org/10.1109/TSE.2021.3079841.

[44] G. Giray, K. E. Bennin, Ö. Köksal, Ö. Babur, and B. Tekinerdogan, “On the use of deep learning in software defect

prediction,” Journal of Systems and Software, vol. 195, p. 111537, Jan. 2023,

https://doi.org/10.1016/j.jss.2022.111537.

[45] H. Alibrahim and S. A. Ludwig, “Hyperparameter Optimization: Comparing Genetic Algorithm against Grid Search

and Bayesian Optimization,” in 2021 IEEE Congress on Evolutionary Computation (CEC), pp. 1551–1559, Jun.

2021, https://doi.org/10.1109/CEC45853.2021.9504761.

[46] L. V, -Arias, C. Q. -López, J. G. -Coto, A. Martínez, and M. Jenkins, “Evaluating hyper-parameter tuning using

random search in support vector machines for software effort estimation,” in Proceedings of the 16th ACM

International Conference on Predictive Models and Data Analytics in Software Engineering, pp. 31–40, Nov. 2020,

https://doi.org/10.1145/3416508.3417121.

[47] A. R. M. Rom, N. Jamil, and S. Ibrahim, “Multi objective hyperparameter tuning via random search on deep learning

models,” TELKOMNIKA, vol. 22, no. 4, p. 956, Aug. 2024, https://doi.org/10.12928/telkomnika.v22i4.25847.

[48] R. Aschauer, “Predictive Modeling of Next Product to Buy in the Banking Sector Using Boosting Techniques,” p. 72

pages, 2024, https://doi.org/10.34726/HSS.2024.121688.

[49] S. Mehta and K. S. Patnaik, “Improved prediction of software defects using ensemble machine learning techniques,”

Neural Comput & Applic, vol. 33, no. 16, pp. 10551–10562, Aug. 2021, https://doi.org/10.1007/s00521-021-05811-

3.

[50] Y. Lan, T. T. -Huu, J. Wu, and S. G. Teo, “Cascaded Multi-Class Network Intrusion Detection With Decision Tree

and Self-attentive Model,” IEEE International Conference on Data Mining Workshops (ICDMW), pp. 1-7, 2022,

https://doi.org/10.1109/ICDMW58026.2022.00081.

[51] L. Qiao, X. Li, Q. Umer, and P. Guo, “Deep learning based software defect prediction,” Neurocomputing, vol. 385,

pp. 100–110, Apr. 2020, https://doi.org/10.1016/j.neucom.2019.11.067.

[52] M. Jorayeva, A. Akbulut, C. Catal, and A. Mishra, “Machine Learning-Based Software Defect Prediction for Mobile

Applications: A Systematic Literature Review,” Sensors, vol. 22, no. 7, p. 2551, Mar. 2022,

https://doi.org/10.3390/s22072551.

[53] P. Suresh Kumar, H. S. Behera, J. Nayak, and B. Naik, “Bootstrap aggregation ensemble learning-based reliable

approach for software defect prediction by using characterized code feature,” Innovations Syst Softw Eng, vol. 17,

no. 4, pp. 355–379, Dec. 2021, https://doi.org/10.1007/s11334-021-00399-2.

[54] N. Monga and P. Sehga, “Effective Software Defect Prediction: Evaluating Classifiers and Feature Selection with

Firefly Algorithm.,” International Journal of Performability Engineering, vol. 20, no. 4, 2024, Accessed: Jun. 30,

2024. [Online]. Available:

https://search.ebscohost.com/login.aspx?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=09731318

&AN=176892169&h=y%2BIxC7kNfAjlZxWWmZFZdLLqtjCe3FdxJeYuiizFbQAnFqfbbIuYLKaNrUsz9uMUnB

%2F2w6Gt0s%2FzhBkmB5nddA%3D%3D&crl=c.

[55] N. A. A. Khleel and K. Nehéz, “Software defect prediction using a bidirectional LSTM network combined with

oversampling techniques,” Cluster Comput, vol. 27, no. 3, pp. 3615-3638, Oct. 2023, https://doi.org/10.1007/s10586-

023-04170-z.

[56] R. Mo, Y. Wang, Y. Zhang, and Z. Li, “Just-in-Time Defect Severity Prediction (S).,” in SEKE, pp. 232–237.

Accessed: Jun. 30, 2024. [Online]. Available: https://ksiresearch.org/seke/seke23paper/paper218.pdf.

[57] U. S. B and R. Sadam, “Towards Developing and Analysing Metric-Based Software Defect Severity Prediction

Model,” arXiv preprint arXiv:2210.04665, 2022, https://arxiv.org/abs/2210.04665.

[58] A. Khalid, G. Badshah, N. Ayub, M. Shiraz, and M. Ghouse, “Software Defect Prediction Analysis Using Machine

Learning Techniques,” Sustainability, vol. 15, no. 6, p. 5517, Mar. 2023, https://doi.org/10.3390/su15065517.

[59] K. Zhu, S. Ying, N. Zhang, and D. Zhu, “Software defect prediction based on enhanced metaheuristic feature selection

optimization and a hybrid deep neural network,” Journal of Systems and Software, vol. 180, p. 111026, Oct. 2021,

https://doi.org/10.1016/j.jss.2021.111026.

[60] L. Chen, C. Wang, and S. Song, “Software defect prediction based on nested-stacking and heterogeneous feature

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&
https://doi.org/10.1145/3524842.3528458
https://doi.org/10.3390/sym13112166
https://doi.org/10.1109/TSE.2013.11
https://doi.org/10.1109/ICCCNT49239.2020.9225352
https://doi.org/10.1109/ACCESS.2020.2985290
https://doi.org/10.1109/TSE.2021.3079841
https://doi.org/10.1016/j.jss.2022.111537
https://doi.org/10.1109/CEC45853.2021.9504761
https://doi.org/10.1145/3416508.3417121
https://doi.org/10.12928/telkomnika.v22i4.25847
https://doi.org/10.34726/HSS.2024.121688
https://doi.org/10.1007/s00521-021-05811-3
https://doi.org/10.1007/s00521-021-05811-3
https://doi.org/10.1109/ICDMW58026.2022.00081
https://doi.org/10.1016/j.neucom.2019.11.067
https://doi.org/10.3390/s22072551
https://doi.org/10.1007/s11334-021-00399-2
https://search.ebscohost.com/login.aspx?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=09731318&AN=176892169&h=y%2BIxC7kNfAjlZxWWmZFZdLLqtjCe3FdxJeYuiizFbQAnFqfbbIuYLKaNrUsz9uMUnB%2F2w6Gt0s%2FzhBkmB5nddA%3D%3D&crl=c
https://search.ebscohost.com/login.aspx?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=09731318&AN=176892169&h=y%2BIxC7kNfAjlZxWWmZFZdLLqtjCe3FdxJeYuiizFbQAnFqfbbIuYLKaNrUsz9uMUnB%2F2w6Gt0s%2FzhBkmB5nddA%3D%3D&crl=c
https://search.ebscohost.com/login.aspx?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=09731318&AN=176892169&h=y%2BIxC7kNfAjlZxWWmZFZdLLqtjCe3FdxJeYuiizFbQAnFqfbbIuYLKaNrUsz9uMUnB%2F2w6Gt0s%2FzhBkmB5nddA%3D%3D&crl=c
https://doi.org/10.1007/s10586-023-04170-z
https://doi.org/10.1007/s10586-023-04170-z
https://ksiresearch.org/seke/seke23paper/paper218.pdf
https://arxiv.org/abs/2210.04665
https://doi.org/10.3390/su15065517
https://doi.org/10.1016/j.jss.2021.111026

488 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) ISSN: 2338-3070

 Vol. 10, No. 2, June 2024, pp. 476-488

Random Search-Based Parameter Optimization on Binary Classifiers for Software Defect Prediction (Misbah Ali)

selection,” Complex Intell. Syst., vol. 8, no. 4, pp. 3333–3348, Aug. 2022, https://doi.org/10.1007/s40747-022-00676-

y.

[61] M. Mafarja et al., “Classification framework for faulty-software using enhanced exploratory whale optimizer-based

feature selection scheme and random forest ensemble learning,” Appl Intell, vol. 53, no. 15, pp. 18715–18757, Aug.

2023, https://doi.org/10.1007/s10489-022-04427-x.

[62] T. Sharma, A. Jatain, S. Bhaskar, and K. Pabreja, “Ensemble Machine Learning Paradigms in Software Defect

Prediction,” Procedia Computer Science, vol. 218, pp. 199–209, 2023, https://doi.org/10.1016/j.procs.2023.01.002

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&
https://doi.org/10.1007/s40747-022-00676-y
https://doi.org/10.1007/s40747-022-00676-y
https://doi.org/10.1007/s10489-022-04427-x
https://doi.org/10.1016/j.procs.2023.01.002

