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 Machine learning classifiers consist of a set of parameters. The efficiency of 

these classifiers in the context of software defect prediction is greatly 

impacted by the parameters chosen to execute the classifiers. These 

parameters can be optimized to achieve more accurate results. In this 

research, the efficiency of binary classifiers for software defect prediction is 

analyzed through parameter optimization using random search technique. 

Three heterogeneous binary classifiers i.e., Decision tree, Support vector 

machine, and Naïve Bayes are selected to examine the results of parameter 

optimization. The experiments were performed on seven publicly available 

NASA Datasets. The dataset was split into 70-30 proportions with class 

preservation. To evaluate the performance; five statistical measures have 

been implemented i.e., precision, recall, F-Measure, the area under the curve 

(AUC), and accuracy. The findings of the research revealed that there is 

significant improvement in accuracy for each classifier. On average, decision 

tree improved from 88.1% to 95.4%; support vector machine enhanced the 

accuracy from 94.3% to 99.9%. While Naïve Bayes showed an accuracy 

boost from 74.9% to 85.3%. This research contributes to the field of machine 

learning by presenting comparative analysis of accuracy improvements using 

default parameters and optimized parameters through random search. The 

results presented that he performance of binary classifiers in the context of 

software prediction can be enhanced to a great extent by employing parameter 

optimization using random search. 
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1. INTRODUCTION  

A software defect refers to any deviation from the intended behavior of the software that diminishes its 

overall quality. Identifying the defects at earlier stages of the software development life cycle (SDLC) is the 

most crucial task as it saves a bundle of resources including time, money, and manpower [1]–[3].  In the past 

two decades, the primary emphasis of researchers is to explore machine learning techniques for software defect 

prediction [4]–[6]. There exist several defect prediction methods that can distinguish between defective and 

non-defective software modules effectively. The state-of-the-art methods include deep learning, ensemble 

learning, transfer learning, and active learning [7], [8]. Deep learning techniques mostly employ convolutional 

neural networks,  recurrent neural networks or graph-based learning; while ensemble learning techniques 

integrate multiple classifiers as base models [9]–[11]. The efficiency of a system for predicting software defects 

is subject to several factors. The main factor affecting the performance of software defect prediction models 

that utilize machine learning methods; is the selection of the classification algorithms. There exist numerous 
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classifiers both supervised and unsupervised including random forest (RF), linear regression (LR), k-nearest 

neighbor (KNN), and K-means clustering etc. that have been implemented by the researchers for software 

defect prediction and induce noticeable results [12]. However in current research, supervised classification 

techniques are preferred and implemented by researchers frequently for software defect prediction [13], [14]. 

The selection of an appropriate classifier also greatly influences the output of the defect prediction system. 

Dissimilar types of classifiers can better analyze the problem and lead to unbiased results. The most commonly 

used heterogeneous binary classifiers are Decision Tree (DT), Support Vector Machine (SVM), and Naïve 

Bayes (NB) [10], [13], [15]. The computational mechanism of these three classifiers varies distinctly which 

can analyze the classifiers effectively. 

Machine learning classifiers comprise a set of parameters that direct the behavior of the classifiers.  While 

implementing the classifiers, the researchers can access individually configurable parameters and adjust them 

to yield maximum results [16]–[18]. For example, in Linear Regression (LR), the value of the intercept can be 

adjusted to get maximum performance. Similarly, in KNN; the number of nearest neighbors K can be optimized 

[19], [20].  In recent times, many studies have taken place on parameter optimization that yields remarkable 

output [21]. There exist several parameter optimization techniques including grid search, random search, and 

Bayesian optimization [22], [23]. Grid search and Bayesian search methods are computationally expensive as 

they perform exhaustive search and build probabilistic model respectively. So that all the possible 

combinations of the parameters can be tried resulting in optimal results [24]. Whereas, random search offers a 

simple method for parameter optimization which is computationally efficient specifically when resources are 

limited [23].  

Mostly, the researchers rely on default parameters which exhibit low accuracy for software defect 

prediction frameworks. In this research, random search has been employed to analyze configurable parameters 

of three heterogeneous binary classifiers namely DT, SVM, and NB. This optimization technique can be 

generalized in several software defect prediction contexts leading to improved accuracy of defect prediction 

frameworks. The behavior of classifiers is examined after optimizing the parameters using multiple statistical 

measures. The experiments are performed on seven widely used clean versions of NASA datasets including 

CM1, KC3, MC1, MC2, MW1, PC2, and PC3 [25]. The performance of the classifiers is measured using 

frequently employed five performance measures including precision, recall, F-measure, AUC, and accuracy 

[26]. 

This research makes the following contributions:  

• Access the practical efficiency of random search method for parameter optimization  

• Enhance the predictive power of software defect prediction systems by optimizing binary classifiers. 

• Statistical analysis of the performance exhibited by the optimized binary classifiers. 

 

2. RELATED WORK 

Software defect prediction is a process of identifying and predicting potential defects or bugs in software 

code before it is released to production. This can be done using various techniques such as static code analysis, 

machine learning, and data mining. A hybrid framework for software defect prediction was developed, utilizing 

feature classification with twelve NASA datasets. The study included two approaches, one utilizing feature 

selection and the other without, both incorporating bagging and boosting techniques using a Random Forest 

base classifier for improved accuracy [27]. Similarly, Balogun et al. conducted research on utilizing Filter 

Feature Ranking and 14 different Filter Subset Selection techniques, using five NASA datasets and Best First 

Search as an FS technique. They found that the Filter Subset Selection strategy resulted in improved prediction 

accuracy and that Feature Filter Ranking methods were more reliable for prediction purposes [28]. Another 

research was conducted to evaluate the efficiency of four different classifiers, all utilizing a back-propagation 

approach, in the context of software defect prediction using NASA datasets. A comparison was made between 

the performance of the fused artificial neural network-Bayesian regularization (ANN-BR) classifier and other 

classifiers, using various NASA datasets. The results showed that the ANN-BR classifier performed 

exceptionally well [29]. Iqbal et al. conducted research by using twelve NASA datasets, where three classifiers 

were implemented and compared. The classifiers used in the study were Decision Tree (DT), Naive Bayes 

(NB), and K-Nearest Neighbor (KNN), and results were analyzed using various performance measures. The 

study found that the Naive Bayes classifier had an accuracy of 78.69%, while other classifiers such as 

Multilayer Perceptron, Radial Basis Function, Support Vector Machine, K-Star, OneR, PART, Decision Tree, 

and Random Forest had higher accuracy values ranging from 84.04% to 85.76% [30]. 

Parameter optimization is the practice of determining the optimal settings for the parameters of a 

classifier. This is accomplished to enhance the efficiency and stability of the classifier [31]. Tantithamthavorn 

et al. explored the application of automated techniques for adjusting the parameters of software defect 
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prediction models. The authors investigated the classifiers’ efficiency and stability, parameter transferability, 

computational cost, and ranking of the different classifying methods when applying these techniques. They 

assessed 26 widely-utilized classification methods using 12 metrics of performance across 18 datasets derived 

from both proprietary and open-source systems. They found that optimization improves the performance of 

defect prediction models by up to forty percent and that the significance of adjusting parameters should be 

cautiously evaluated when selecting a technique for defect prediction studies [32]. The effects of applying 

hyperparameter optimization (HO) on ensemble learning algorithms for defect prediction performance were 

examined by Muhammed Maruf ¨Ozt¨urk [33]. A new ensemble learning algorithm called novel-Ensemble 

was presented and tested on 27 data sets, and compared with three alternatives. The results showed that 

ensemble methods featuring HO perform better than a single predictor, and the novel Ensemble yields 

promising results. The study also revealed that the success of HO is not dependent on the type of classifiers, 

but rather on the design of ensemble learners. A Hyper-Parameter Optimization technique for Classifiers in 

context of software defect prediction was explored by Khan et al. Using an Artificial Immune Network. The 

study found that utilizing AIN and its applications for predicting software bugs in machine learning classifiers 

improved performance when compared to using classifiers with their default hyper-parameters [34]. Mabayoje 

et al. examined the effect of parameter tuning on the k-NN algorithm in software defect prediction. They found 

that using a k value greater than 1 improved the average RMSE values. Using distance weighting also improved 

predictive performance by 8.82% and 1.7% based on AUC and accuracy respectively. Overall, parameter 

tuning was found to have a progressive impact on the predictive performance of k-NN in SDP [19]. Kang et 

al. discussed software quality assurance (SQA) in ships, where the safety-critical nature of ships makes SQA 

a fundamental prerequisite. The study presents a method called Just-in-time software defect prediction (JIT-

SDP), which conducts software defect prediction on commit-level code changes to reach efficient SQA 

resource distribution. The study found that by applying an optimization algorithm called Harmony search (HS) 

to JIT-SDP, the prediction performance can be improved [31]. Smithson et al. analyzed the performance of 

Neural Networks based upon Hyper-Parameter Optimization and revealed that Hyper-parameters, such as the 

number of hidden layers and nodes per layer, play a crucial role in the performance and computational 

complexity of such models. Traditionally, these hyper-parameters have been optimized manually. To address 

this, a multi-objective design space exploration method was presented that reduced the number of solution 

networks trained and evaluated through response surface modeling [35]. The detection of code smells was 

examined by Shen et al. The researcher used hyper-parameter optimization techniques to enhance the 

efficiency of these methods specifically looking at two types of code smells (Data Class and Feature Envy) 

and using four different optimizers and six commonly used classifiers. The study finds that the use of hyper-

parameter optimization considerably advances the efficiency of code smell detection and that the Differential 

Evolution optimizer is particularly effective when used with the Random Forest classifier [36]. Another 

framework was proposed for optimizing energy consumption in the distillation process using parameter 

optimization techniques [21]. The predictive framework consisted of three steps: learning, validation and 

improvement. It was witnessed that the framework performance is enhanced by optimizing its hyper-

parameters. Researchers also explored the use of an alternative method, GHOST, for detecting code smells in 

order to reduce complexities and make code more maintainable. GHOST is a fusion of hyper-parameter 

optimization of feed forward neural networks and an innovative oversampling technique called "fuzzy 

sampling". The researchers suggested that this technique could be useful in other types of analytics as well 

[37]. 
 

3. MATERIALS and METHODS  

This research examines the performance of binary classifiers using random search based upon default 

parameters and optimized parameters. It suggests the optimal parameters that contribute significantly towards 

the effectiveness of software defect prediction frameworks. The research consists of 3 stages: 1) Dataset 

selection 2) Classification through parameter optimization 3) Performance evaluation. This research has been 

conducted in two dimensions; first, the parameter optimization is skipped and the datasets are supplied directly 

to the classification algorithms. Whereas in the second dimension, the default parameters of the classifiers are 

first optimized using random search method and then configured within the classifiers. Hence, they yield 

maximum results for the selected datasets within the realm of predicting software defects or faults or bugs. 

The results achieved from both dimensions are compared using various statistical measures. The experiments 

have been performed using MATLAB a widely-used machine learning tool, which yields reliable outcomes. 

Fig. 1. shows a flowchart of the proposed methodology.  
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Fig. 1. Flowchart of proposed methodology [created using DALL-E] 

 

3.1. Dataset Selection 

In the first stage of this research, the dataset is selected. NASA datasets are the most widely used publicly 

available datasets that have been utilized by various researchers [38]. These datasets were analyzed by 

Shepperd et al. that produced two advanced versions of the datasets after passing them through a cleaning 

process i.e., D’ and D’’.  D’ version contains identical and inconsistent instances whereas D’’ excludes all the 

inconsistent and duplicate instances. The criteria employed to preprocess and clean the datasets is mentioned 

in [39]. These datasets contain historical data of real-world software projects developed in different languages 

i.e. C++, Java, Perl, etc.[40]. This study has selected seven NASA datasets including CM1, KC3, MC1, MC2, 

MW1, PC2, and PC3. CM1 and KC3 belong to spacecraft instrument project, MC1 and MC2 present the 

mission control system, MW1 represents ground-based system related to zero-gravity features; and PC2, PC3 

show features belonging to a science data processing system [41], [42]. The datasets comprise various quality 

metrics of the software in the form of independent attributes including LOCEXECUTABLE, 

MULTIPLECONDITIONCOUNT, and LOCTOTAL, etc. and one dependent attribute called the target 

attribute that tells whether a particular module in the dataset is defective or non-defective. The target attribute 

is predicted based on independent attributes. The value of the target attribute is either “Y” or “N”; where “Y” 

represents the respective module has defects and “N” represents that the respective module doesn’t have 

defects [19], [43], [44]. In this research, a clean version of   NASA datasets D’’ is utilized and the performance 

of the binary classifiers is analyzed. Table 1 presents the datasets employed in this research.  

 

Table 1.  Details of NASA Datasets 
Dataset Modules Attributes Language Defective Non-

Defective 

Defective% Description 

CM1 38 327 C 42 285 12.8 
Spacecraft 

instrument  

KC3 40 194 JAVA 36 158 18.5 
Spacecraft 

instrument  

MC1 39 1952 C/C++ 36 1916 1.8 Mission control 

MC2 40 124 C 44 80 35.4 Mission control 

MW1 38 250 C 25 225 10 ground-based  

PC2 37 722 C 16 706 2.2 science data 

PC3 38 1,053 C 130 923 12.3 science data 
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3.2. Classification using optimized parameters  

In the second stage, the selection of binary classifiers is made and their parameters are optimized through 

random search. Parameter optimization which is also referred as hyperparameter tuning; is the process of 

finding the optimal combination of configurable parameters that produce maximum results. These parameters 

are optimized before model training and the performance is enhanced through an iterative optimization process. 

The integration of optimized parameters into machine learning model produces a robust and generalized model 

that exhibits significant performance [45].  

Parameter optimization is a complex process which is greatly influenced by the number of parameters to 

optimize, range of parameters to be explored, the complexity of selected machine learning model, dataset size, 

and optimization technique. As the number of parameters, model complexity, or the dataset size increases, 

parameter optimization tends to become a more computationally complex process which demands more 

resources. In this study, random search has been selected as a parameter optimization technique due to its 

simplicity and less demand of resources [46].  

Random search: Random search is a straightforward and efficient parameter optimization technique that 

explores the configurable parameters of machine learning algorithms using trial-and-error method [47]. The 

first step of random search involves identification of configurable parameters of a classifier. In the second step, 

the parameter optimization space is explored i.e., the analysis of possible values to be supplied to parameters 

to achieve optimal result. In the third step, a random combination of configurable parameters is sampled and 

the model is trained over that combination. In the fourth step, the results are analyzed using selected 

performance measures. in the fifth step, these results are optimized using various combinations of parameters. 

This process is repeated until optimal results are achieved [46], [48]. In the final step, the most suitable 

combination of parameters is identified and selected for classification. A step-by-step approach to execute 

random search is shown in Fig. 2.  

 

 
Fig. 2. step-by-step process of random search execution 

 

Three binary classifiers of heterogeneous nature have been implemented in this research. The details of 

the classifiers are given as follows.  

Decision Tree (DT): DT is a widely used binary classifier that follows a hierarchical structure consisting 

of root nodes, intermediate nodes, and terminal nodes [49]. It’s a robust algorithm that runs efficiently for 

binary classification problems [50]. The root node holds all the instances that are to classify. Classification is 

accomplished by running several tests on the root and intermediate nodes. Based on the results of the tests 

achieved, the leaf node holds the output class label.  

DT consists of several parameters including the MinLeafSize , MinParentSize , maximum number of 

splits, MaxDepth,  and split criterion.  The configurable parameters for optimized performance are identified 

as maximum number of splits and split criterion.  DT shows the optimal performance when the “maximum 

number of splits” parameter is set as “50” and the “split criterion” parameter is kept as “Gini’s diversity 

index”.  

Support Vector Machine (SVM): SVM makes use of support vectors and a hyperplane for classification 

[51]. It’s an extensively used binary classifier that produces effective results with the help of a hyperplane by 

drawing a boundary that separates the classes. SVM has several parameters including kernel function, Box 

constraint level, PolynomialOrder , and kernel scale. SVM performs well when the “kernel function” parameter 
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is chosen as “Quadratic” and the “Box constraint level” parameter is kept as “2”.  

Naïve Bayes (NB): NB is a probability-driven binary classification algorithm. It executes by assuming 

that there doesn’t exist any dependency between dataset attributes. It executes remarkably to cope with data 

imbalance issues [52]. It has several parameters including width, support, distribution names, and kernel type. 

Tuning parameters of NB include Distribution names and kernel type. NB produces optimal results when the 

“Distribution names” parameter is set as “kernel” and the “kernel type” is “Gaussian”. The parameters detail 

of all the selected classifiers is shown in Table 2. Finally, the third and the last stage reflect the results achieved 

after a comparative analysis of default and optimized classifiers. An overview of the proposed methodology is 

shown in Fig. 3. The research results are described in the next section. 

 

Table 2. Optimized parameters for binary classifiers 
Classifier  Optimized parameters Values 

Decision tree 
maximum number of splits  50 

split criterion Gini’s diversity index 

Support vector machine  

kernel function Quadratic 

Box constraint level 2 

Naïve Bayes  

Distribution names kernel 

kernel type Gaussian 

 

 
Fig. 3. Overview of the Proposed Methodology 

 

4. RESULTS AND DISCUSSION  

In this section, the findings of the experiments are examined.  The proposed approach was validated a 

widely used 10-fold cross validation methodology which produced effective results. The performance of the 

optimized classifiers is evaluated through the most commonly used performance measures including precision, 

recall, F-measure, AUC, and accuracy [53] with the main focus on the accuracy; since it presents the overall 

effectiveness of the proposed approach. The research considered using these measures as they 

comprehensively capture the behavior of binary classifiers [54], [55]. Precision and recall present the 

correctness of defective modules predicted by the classifier. Whereas, f-measure shows the balance between 

correct and incorrect predictions. Accuracy is the most crucial measure which demonstrates the overall correct 

predictions (defective/non-defective modules) of a classifier. AUC differentiates between defective and non-

defective modules based on the predictions of a classifier. The higher the values of all these measures, the 

better the performance of the classifier [54], [56].  All the measures are derived using the confusion matrix 

shown in Table 3. 

 

Table 3.  Confusion Matrix 
 Classified Defective Classified Non-Defective 

Actual Defective TP FN 

Actual Non-Defective FP TN 

 

A confusion matrix is a technique widely implemented by researchers to evaluate the performance of 

classifiers [57]. The performance of both dimensions of the research is analyzed through a confusion matrix. 

It has four parameters as listed below:  
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1. True Positive (TP): This parameter holds the instances that are defective and also classifies them as 

defective. False Positive (FP): This parameter holds instances that are non-defective but incorrectly 

classified as defective.  

2. False Negative (FN): This parameter holds the instances that are defective but classified as non-defective.  

3. True Negative: This parameter holds instances that are non-defective and also categorized as negative.  

The performance measures are derived in equation forms from the confusion matrix: 

 
Precision =

TP

TP + FP

 
(1) 

 
Recall =

TN

TN + FP
 

 
(2) 

 
F − measure =

2 ∗ Recall ∗ Precision

Recall + Precision

 
(3) 

 
𝐴𝑈𝐶 − 𝑅𝑂𝐶 =

1 + 𝑇𝑃𝑟 − 𝐹𝑃𝑟

2

 
(4) 

 
Accuracy =

(TP +  TN)

(TP +  TN +  FP +  FN)

 
(5) 

 

The classification was performed in two dimensions: 1) With default parameters and 2) With optimized 

parameters. In the first dimension, the datasets are supplied to the classifiers with default parameters; whereas 

in the second dimension, the datasets are supplied to the classifiers having optimized parameters. The below 

tables reflect the results of the research in both dimensions. Table 4 – Table 10 reflect the results of each dataset 

achieved by executing classifiers with optimized parameters. 

 

Table 4.  CM1 Dataset Results 
Classifier Precision Recall Accuracy % F-Measure AUC 

DT 0.833 0.769 94.9 0.8 0.873 

SVM 1 1 100 1 1 

NB 0.471 0.615 85.9 0.533 0.755 

 

Table 5.  KC3 Dataset Results 
Classifier Precision Recall Accuracy % F-Measure AUC 

DT 0.9 0.818 94.9 0.857 0.899 

SVM 1 1 100 1 1 

NB 0.5 0.455 81.4 0.476 0.675 

 

Table 6.  MC1 Dataset Results 
Classifier Precision Recall Accuracy % F-Measure AUC 

DT 0.778 0.636 99 0.7 0.816 

SVM 1 0.909 99.8 0.952 0.955 

NB 0.286 0.545 96.6 0.375 0.759 

 

Table 7.  MC2 Dataset Results 
Classifier Precision Recall Accuracy % F-Measure AUC 

DT 0.8 0.923 89.5 0.857 0.902 

SVM 1 1 100 1 1 

NB 1 0.462 81.6 0.632 0.731 

 

Table 8.  MW1 Dataset Results 
Classifier Precision Recall Accuracy % F-Measure AUC 

DT 0.889 1 98.7 0.941 0.993 

SVM 1 1 100 1 1 

NB 0.467 0.875 88 0.609 0.878 
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Table 9. PC2 Dataset Results 
Classifier Precision Recall Accuracy % F-Measure AUC 

DT 1 0.2 98.2 0.333 0.6 

SVM 1 1 100 1 1 

NB 0.12 0.6 88.9 0.2 0.748 

 

Table 10.  PC3 Dataset Results 
Classifier Precision Recall Accuracy % F-Measure AUC 

DT 1 0.795 97.5 0.886 0.898  

SVM 1 1 100 1 1 

NB 0.287 0.692 75 0.406 0.725 

 

4.1. Comparative analysis 

The integration of optimized parameters shows a substantial improvement in the prediction accuracy of 

the classifiers. Table 11 represents the results of both dimensions; accuracy achieved from classifiers with 

default parameters, and optimized parameters. Decision tree shows accuracy improvement for all datasets with 

maximum accuracy improved from 81.4% to 91.9% for MC2 dataset. Similarly, support vector machine 

exhibits enhanced accuracy for all datasets with most optimal results for PC3 dataset with an improvement 

from 89.2% to 100%. The significant accuracy results for both decision tree and support vector machine reflect 

that both the classifiers are sensitive to parameter optimization. However, naïve bayes shows varied 

performance across datasets after parameter optimization. It shows a maximum accuracy boost from 20.6% to 

75% for PC3 dataset. The minimum accuracy increase is for CM1 dataset where accuracy increased from 

84.8% to 85.9%. It is also evident that the accuracy remains same for KC3 dataset i.e., 81.4% demonstrating 

that the optimization technique didn’t affect the simplicity of the naïve bayes classifier.  It can also be seen 

that naïve bayes doesn’t produce results for MC1 and MW1 datasets in their default configurations. It is 

because these datasets show zero or approaching to zero variance in features across all the instances. Since 

naïve bayes works on the principle of probability, and it relies on variance of features for probability calculation 

[58]. Fig. 4 shows a DT-based accuracy comparison of the default classifier and optimized classifier for all 

datasets. Fig. 5 shows an SVM-based accuracy comparison of the default classifier and optimized classifier for 

all datasets. Fig. 6 shows an NB-based accuracy comparison of the default classifier and optimized classifier 

for all datasets. Fig. 7 shows the AUC comparison with default classifiers for all datasets. Fig. 8 shows the AUC 

comparison with optimized classifiers for all datasets. 

 

Table 11.  Result of parameter optimization using accuracy 
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DT 86 94 81.4 94.9 98.3 99 76.3 89.5 89.3 98.7 97.7 98.2 87.7 97.5 

SVM 91.9 100 94.9 100 98.3 99 89.5 100 98.7 100 97.7 100 89.2 100 

NB 84.8 85.9 81.4 81.4 - 96.6 73.7 81.6 - 88 86.2 88.9 20.6 75 

 

 
Fig. 4. Accuracy comparison of default and optimized parameters for DT 
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Fig. 5. Accuracy comparison of default and optimized parameters for SVM 

 

 
Fig. 6. Accuracy comparison of default and optimized parameters for NB 

 

 
Fig. 7. Default AUC comparison of DT, SVM, and NB 

 

This study has utilized seven diverse defect datasets belonging to NASA matric dataset program. These 

datasets have been derived from real-world projects that were developed using multiple programming 

languages including C, C++, and JAVA. Hence, the findings of the study can be effectively applied to other 

defect datasets from Eclipse, AEEEM, PROMISE or ReLink repositories [59]–[61]. These finding can also be 

applied to other defect prediction contexts i.e. within -project/cross-project defect prediction, and cross version 

defect prediction considering the dataset size, class-balanced ratio and the model complexity, and [62].  

 

 
Fig. 8. Optimized AUC comparison of DT, SVM, and NB 
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4.2. Limitations 

While the proposed methodology highlights the significant role of random search for parameter 

optimization for software defect prediction, there are some limitations associated with it as well. The 

experiments are specific to NASA defect datasets, the proposed methodology may deviate from the expected 

results on other defect datasets. The quality of the selected dataset is another concern to execute the proposed 

methodology. The study selected already preprocessed, clean version of NASA defect dataset [39]. Moreover, 

while performing experiments, the class-imbalance problem has not been addressed to maintain the originality 

of the datasets. This problem can lead to biased results. Addressing these limitations can enhance the efficiency 

of random search-based parameter optimization for binary classifiers.    

 

5. CONCLUSION 

Parameter optimization is a crucial aspect to enhance the efficiency of machine learning classifiers.  The 

study aimed to systematically analyze and optimize the performance of machine learning classifiers using 

random search. This research presented the impact of parameter optimization on three heterogonous binary 

classifiers namely DT, SVM, and NB. The experiments were performed using a clean version of seven publicly 

available NASA datasets. The research was carried out in two dimensions; one with default classifiers and the 

second with optimized classifiers. The efficiency of the resultant classifiers was accessed using five 

performance measures i.e., precision, recall, F-measure, AUC, and accuracy. Results exhibit that the optimized 

classifiers outperform default classifiers. Hence. random search can help to identify the optimal parameters of 

binary classifiers leading to produce enhanced performance. The results reveal that random search can improve 

prediction accuracy, robustness, and generalization of binary classifiers. It is particularly useful when there is 

high-dimensional parameter space where grid-search or other searching techniques become impractical. By 

timely identifying potential software defects, organizations can do risk management and save their time, 

money, and manpower.  

For future work, it is recommended that the resampling technique such as Synthetic Minority Over-

sampling Technique (SMOTE) along with the feature selection using genetic algorithm should be applied to 

NASA datasets before experimenting with parameter optimization to attain improved results. 
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