
Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI)

Vol. 9, No. 4, December 2023, pp. 1093-1103

ISSN: 2338-3070, DOI: 10.26555/jiteki.v9i4.27150 1093

Journal homepage: http://journal.uad.ac.id/index.php/JITEKI Email: jiteki@ee.uad.ac.id

Development of SLOC, CC, SQL Complexity Methods to Measure

the Level of Similarity Complexity of Software Modules

Made Agus Putra Subali, I Gusti Rai Agung Sugiartha, I Putu Aditya Putra
Institut Teknologi dan Bisnis STIKOM Bali, Denpasar, Indonesia

ARTICLE INFO ABSTRACT

Article history:

Received September 07, 2023

Revised November 06, 2023

Published November 22, 2023

 Software metrics are often used to reflect vulnerabilities in program code to

measure the complexity of each software module. Knowing the complexity

of each software module is an important thing to do because the project

manager can analyze defects that may occur, costs spent, work schedules, and

the resources needed. In this research, we aim to apply the SLOC, CC, SQL

Complexity method in measuring the level of similarity of complexity

between software modules by paying attention to the level of similarity of the

syntactic structure of program logic and SQL commands, by knowing the

similarity between software modules the project manager can predict the

effort required. Based on the results of the level of equality for the eight

modules, an average of 90% was obtained. The high results are due to the

third feature used having a high level of similarity. In further research, other

features will be added and weighting will be given to each feature.

Keywords:

Software Metrics;

Similarity Measurement;

SLOC;
CC;

SQL Complexity

This work is licensed under a Creative Commons Attribution-Share Alike 4.0

Corresponding Author:

Made Agus Putra, Institut Teknologi dan Bisnis STIKOM Bali, Denpasar, Indonesia

Email: madeagusputrasubali@gmail.com.

1. INTRODUCTION

Software metrics are standard indicators of software quality that can be assessed and measured [1], [2].

Many researchers often use software metrics to estimate vulnerabilities in program code and measure software

complexity [3]–[5]. One way to determine software complexity is to measure the level of similarity in

complexity of each program code in the software module [6]–[8]. Knowing the complexity of each software

module is an important thing to do because the project manager can estimate defects that may occur, costs

spent, work schedules, and the resources needed [9], [10]. Several software metrics methods are often used by

researchers such as SLOC, CC, and SQL Complexity [11]. In previous research, there were several popular

methods used to measure the complexity of software, including Source Lines of Code (SLOC) [12]–[14],

Cyclomatic Complexity (CC) [15]–[17], and Halstead Complexity (HC) [18]–[20].

The characteristics of these three methods only pay attention to the quantity of program code syntax, such

as the number of lines of program code, the complexity of implementing program conditions, and the number

of expressions used [11]. In software modules, especially in information system software, there is not only

program logic syntax but there are also SQL or query commands. In the research of Jamil, et al. and Brink, et

al. The complexity of using SQL commands was measured, especially in terms of the quantity of database

object usage, such as the number of tables, the number of data rows, the number of table relationships [21],

and the number of characteristics of the SQL commands used [22]. Research conducted by Subali, et al.

developed a method that focuses more on the quality of using SQL commands by giving different weights to

each type of SQL command [11]. Based on several studies, there is no way to measure the complexity of a

software module that takes into account the use of program code and SQL commands simultaneously.

The Source Lines of Code (SLOC) method is a software metric method used to measure software

complexity by looking at the number of lines of program code [13], [23]. Not all lines of program code are

counted, lines of program code such as comments and blank lines are not included. Cyclomatic Complexity

(CC) is a software metric method for measuring the complexity of software by paying attention to the level of

file:///C:/Users/USER/Documents/jurnal/jiteki/vol%209%20no%204/10.26555/jiteki.v9i4.27150
http://journal.uad.ac.id/index.php/JITEKI
file:///C:/Users/DELL%207300/Documents/00%20KERJA/JITEKI/new/jiteki@ee.uad.ac.id
https://creativecommons.org/licenses/by-sa/4.0/deed.id
https://creativecommons.org/licenses/by-sa/4.0/deed.id
mailto:madeagusputrasubali@gmail.com

1094 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) ISSN: 2338-3070

 Vol. 9, No. 4, December 2023, pp. 1093-1103

Development of SLOC, CC, SQL Complexity Methods to Measure the Level of Similarity Complexity of Software

Modules (Made Agus Putra Subali)

program logic complexity [15], [16]. The way CC works begins by mapping the program logic process into a

flow graph model consisting of nodes and edges. Based on the resulting flow graph model, the level of

complexity of a software module can be determined, where the higher the CC value, the more complex the

program logic level [17], [24]. The SLOC and CC methods have weaknesses when applied to software modules

that have SQL commands because the SLOC and CC methods only focus on implementing program code

syntax [15], [25]. The SQL Complexity method is a method used to measure software complexity by paying

attention to the use of SQL commands [11], [26]. The SQL Complexity method does not only focus on the

number of attributes or query parameters used but also pays attention to the quality of each parameter by adding

weight to each SQL command parameter. The SQL Complexity method consists of five stages, including (a)

reading the program module, (b) forming the SQL query module, (c) giving SQL query weight, (d) calculating

SQL Complexity, and (e) module complexity result. The SQL Complexity method has the disadvantage of

only focusing on using SQL commands or queries on software modules [11].

The three methods when applied to measure the level of similarity in a software module cannot

accommodate all the syntax of program logic and SQL commands or queries at once. Based on this, in this

study, we propose to develop a method that combines the SLOC, CC, and SQL Complexity methods to be able

to measure the level of similarity between software modules that contain program code syntax and SQL

commands, besides that, we use the cosine similarity method which is used to pay attention to similarities

structural comparison between modules [27]–[29], meanwhile the SLOC, CC, and SQL Complexity methods

are used to form the attributes of each module used. The modules used in this study were eight software

modules obtained from the school’s exam management system. The characteristics of each module are written

using the MVC concept, where there are model, view, and controller files [30]. The result of this study is a

method that can measure the level of similarity of the overall complexity of software modules both from the

use of program logic syntax and SQL commands. There are several research contributions to the proposed

method, including being able to accommodate all program code syntax in terms of statement quantity and

program code complexity, besides that the proposed method also pays attention to the use of sql commands in

measuring the level of similarity of each software module.

2. METHODS

Fig. 1 is an overview of the proposed method. The initial stage is to collect data from eight software

modules, then calculate the value of the three methods of SLOC, CC, and SQL Complexity for each of the

eight modules. Based on the calculation results of the three methods for each module, the level of similarity

between modules is then calculated using the cosine similarity method. The results of the similarity level of

each module are then analyzed and compared with the expert assessment.

Fig. 1. Proposed Method

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&

ISSN: 2338-3070 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) 1095

 Vol. 9, No. 4, December 2023, pp. 1093-1103

Development of SLOC, CC, SQL Complexity Methods to Measure the Level of Similarity Complexity of Software

Modules (Made Agus Putra Subali)

2.1. Data

The research data used are eight software modules from the new student admission system and student

quizzes. The system specifications used are built on the CodeIgniter 3.1.10 framework and MySQL 5.7.3

RDBMS. This system was built in 2019 and has been used by a private school in Bali. Fig. 2 is a general

description of the use case diagram of the system used.

Fig. 2. Use Case Diagram, Answering the Quiz (Menjawab Kuis), Updating the Biodata (Update Biodata),

Post Problem (Posting Soal), Quiz Grading (Menilai Quiz), Class Input (Input Kelas), Student Input (Input

Siswa), Teacher Input (Input Guru), Course Input (Input Mapel)

Each use case represents a software module, there are eight use cases, including: (a) menjawab kuis, (b)

update biodata, (c) posting soal, (d) menilai kuis, (e) input kelas, (f) input siswa, (g) input guru, and (h) input

1095aple. The selection of the eight software modules is because they represent each level of software

complexity, there are low, normal, and high. Each software module is formed from three files, namely model,

view and controller files. These three types of files represent a software module that is used as research data,

as seen in Fig. 3. The data used are model, view, and controller files so that it is obtained, 𝑀𝑖,𝑚 is the 𝑖 th

software module in the model file, 𝑀𝑖,𝑣 is the 𝑖 th software module in the view file, 𝑀𝑖,𝑐 is the 𝑖 th software

module in the controller file.

Fig. 3. Research Data Collection Process

Table 1 shows the characteristics of data usage for each method used. The characteristics of the data in

each method used are different, if you pay attention to the SLOC method using three types of data or files with

the characteristics of calculating all statements in the model file and controller file, considering that the data

used is obtained from using the PHP CodeIgniter 3.1.10 framework then each statement ends with a semicolon

(other than statements for class and method declarations). In the file view, the SLOC method only calculates

the use of statements from JavaScript and PHP syntax, without calculating HTML and CSS syntax. The CC

method uses all types of files about the use of branching instructions or the complexity of the logic in all files.

Meanwhile, the SQL Complexity method only uses one type of file, namely the model file by calculating the

complexity of using SQL queries or commands.

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&

1096 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) ISSN: 2338-3070

 Vol. 9, No. 4, December 2023, pp. 1093-1103

Development of SLOC, CC, SQL Complexity Methods to Measure the Level of Similarity Complexity of Software

Modules (Made Agus Putra Subali)

Table 1. Data Characteristics of Each Method
Method File Characteristics

SLOC

File Model

File View

File
Controller

Counting all command lines or statements in the model file and controller file. Meanwhile, in the

view file, the use of statements in JavaScript and PHP syntax is calculated.

CC

File Model

File View
File

Controller

Calculates the logical complexity of the entire file.

SQL

Complexity
File Model Calculating the complexity of each query or SQL command used in each model file.

2.2. SLOC, CC, SQL Complexity

The next process is to calculate the SLOC, CC, and SQL Complexity values of the eight software modules

using (1), (2), and (3). 𝐿𝐿𝑂𝐶 is the number of logical lines (without comment lines and blank lines). Based on

(1) the SLOC values are obtained as follows, 𝑀𝑖,𝑆𝐿𝑂𝐶 is the SLOC value on the 𝑖 software module. 𝐸 is the

number of edges or lines on the flow graph. 𝑁 is the number of nodes or circles in the flow graph.

 𝑆𝐿𝑂𝐶 = 𝐿𝐿𝑂𝐶 (1)

 𝐶𝐶 = 𝐸 − 𝑁 + 2 (2)

The results of the CC calculation indicate how many tests must be carried out to ensure that each command

is executed, the higher the CC value, the more complex the logic of a software [24], [31], [32]. Based on (2)

the CC value is obtained as follows, 𝑀𝑖,𝐶𝐶 CC value on the 𝑖 th software module. The SQL Complexity method

consists of five stages, among others:

a) Reading Program Module

b) Forming SQL Query Module

c) Giving SQL Query Weight

d) Calculating SQL Complexity

e) Module Complexity Result

Fig. 4 is the process flow of each stage of the SQL Complexity method, in the initial stage, the process of

mapping SQL queries in the software is carried out, then a query visualization model is formed and weights

are given for each attribute before calculating the complexity of each query.

Fig. 4. SQL Complexity Process [11]

The formula for calculating the SQL Complexity value is as (3). 𝑛 is the total SQL query attribute. 𝑥𝑖 is

the number of SQL query attribute 𝑖. 𝑤𝑖 is the weight of the SQL query attribute 𝑖. Based on (3), the SQL

Complexity value is obtained as follows, 𝑀𝑖,𝑆𝐶 SQL Complexity value in the 𝑖 th software module.

 𝑆𝐶 =∑𝑥𝑖 × 𝑤𝑖

𝑛

𝑖=0

 (3)

2.3. Cosine Similarity

After the SLOC, CC, and SQL Complexity values are obtained, the process of calculating the level of

similarity for each module is then carried out using the cosine similarity method [28], [33], thus obtaining (4).
𝑊𝑖,𝑎 is the score 𝑖 in module 𝑎. 𝑊𝑖,𝑏 is the score 𝑖 in module 𝑏. The score 𝑖 is the SLOC, CC, and SQL

Reading
Program
Module

Forming SQL
Query Module

Giving SQL
Query Weight

Calculating
SQL

Complexity

Module
Complexity

Result

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&

ISSN: 2338-3070 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) 1097

 Vol. 9, No. 4, December 2023, pp. 1093-1103

Development of SLOC, CC, SQL Complexity Methods to Measure the Level of Similarity Complexity of Software

Modules (Made Agus Putra Subali)

Complexity value for each module. The similarity level results for each module have a value range of 0-1, if

the value is close to one then the two modules have a high level of similarity [34].

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑎, 𝑏) =

𝑎 × 𝑏

|𝑎| × |𝑞|
=

∑ (𝑊𝑖,𝑎 ×𝑊𝑖,𝑏)
𝑛
𝑖=1

√∑ 𝑊𝑖,𝑎
2𝑛

𝑖=1 × ∑ 𝑊𝑖,𝑏
2𝑛

𝑖=1

(4)

2.4. Evaluation of Results

The evaluation process is carried out in several stages, among others:

1) SLOC Software Size Category

Table 2 is a software size category based on SLOC.

Table 2. SLOC Software Size Category [35]
Relative Size Size Code SLOC Size

Extra Extra Small XXS ≥0 - <530
Extra Small XS ≥530 - <1590

Small S ≥1590 - <5300

Medium 1 M1 ≥5300 - <15900
Medium 2 M2 ≥15900 - <53000

Large L ≥53000 - <159000
Extra Large XL ≥159000 - <477000

Extra Extra Large XXL ≥477000 - <954000

Extra Extra Extra Large XXXL ≥954000

2) CC Software Category

In Table 3 there are software size categories based on CC.

Table 3. CC Software Size Category [11]
No. CC Rating

1 1-4 Very Low

2 5-10 Low

3 11-20 Normal

4 21-40 High
5 41-50 Very High

6 >51 Extra High

3) Calculation of Expert Rating

SQL Complexity calculations along with the results of the proposed method are carried out by

involving an expert who assesses each level of complexity of the software module, whether the

module complexity level is considered very low, low, normal, high, very high, or extra high.

4) Calculation of Accuracy Level of Similarity Between Modules

Calculation of the level of accuracy is done by comparing the values obtained when measuring the

level of similarity of software modules using the cosine similarity method and the assessment given

by the expert. In (5) is the formula used to obtain the accuracy of the level of similarity modules. 𝑎

is the total value of the expert’s judgment by the results of the proposed method. 𝑏 is the total value

of all modules.

 𝑠 =
𝑎

𝑏
× 100 (5)

Considering that the results of the proposed method are in the value range between 0 and 1, we

formulate software size categories for the proposed method which are shown in Table 4.

Table 4. Software Size Category Proposed Method
No. Metode Usulan Rating

1 0.00 – 0.15 Very Low

2 0.16 – 0.30 Low
3 0.31 – 0.45 Normal

4 0.46 – 0.60 High

5 0.61 – 0.75 Very High
6 0.76 – 1.00 Extra High

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&

1098 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) ISSN: 2338-3070

 Vol. 9, No. 4, December 2023, pp. 1093-1103

Development of SLOC, CC, SQL Complexity Methods to Measure the Level of Similarity Complexity of Software

Modules (Made Agus Putra Subali)

3. RESULTS AND DISCUSSION

The following are the results obtained at each stage of the method carried out, starting from the results of

data collection, calculating the level of similarity, and evaluating the results.

3.1. Data

Table 5 is data collected from model, view, and controller files resulting from calculating all command

lines or statements in the program code using the SLOC method [23], the logical complexity of the program

code for each file using the CC method [15], [16], and the complexity of using SQL queries or commands on

all model file categories using the SQL Complexity method [11].

In the SLOC method in each view file category, only lines of JavaScript or PHP program code are counted,

while HTML and CSS syntax are not counted [36]. The CC value obtained is more dominant in the file

controller category, this is because the controller is responsible for the use of program logic in the MVC

architecture [37]. Calculating the complexity of a query or SQL command in the MVC architecture is

represented by a model that is responsible for data-related operations [38], [39], therefore measuring the

complexity value of SQL commands in the SQL Complexity method only uses the model file category.

Fig. 5 is a visualization of the data obtained from the calculation results in Table 5. If you pay attention

to the scores obtained in the module, the quiz grades are higher than in other modules.

Table 5. Data SLOC, CC, SQL Complexity
No. Module File Category Filename SLOC CC SQLC

1 Menjawab Kuis

File Model
Answer_model.php 38 3 1,75

Question_model.php 31 2 1,60

File View
exam.php 39 4 0

finish.php 13 2 0

File Controller Exam.php 49 7 0
 170 18 3,35

2 Update Biodata

File Model Member_model.php 41 4 1,20

File View profile.php 25 3 0
File Controller Member.php 54 7 0

 120 14 1,2

3 Posting Soal

File Model
Category_model.php 36 5 2,00
Question_model.php 31 2 1,65

File View room/question.add.php 22 2 0

File Controller Question.php 69 8 0
 158 17 3,65

4 Menilai Kuis

File Model Answer_model.php 101 9 10,55

File View room/answer.php 29 2 0
File Controller Answer.php 50 8 0

 180 19 10,55

5 Input Kelas

File Model
Category_model.php 18 2 0,75

Class_model.php 34 3 1,50

File View panel/category.add.php 22 2 0

File Controller Category.php 47 7 0
 121 14 2,25

6 Input Siswa

File Model
Class_model.php 34 3 1,50

Member_model.php 25 2 1,35
File View panel/user.add.php 22 2 0

File Controller User.php 53 7 0

 134 14 2,85

7 Input Guru

File Model

Class_model.php 34 3 1,50

Teach_model.php 19 2 0,90

Teacher_model.php 21 2 1,05
File View panel/employee.add.php 25 2 0

File Controller Employee.php 62 10 0

 161 19 3,45

8 Input Mapel

File Model
Categgory_model.php 36 5 2,00

Question_model.php 31 2 1,65
File View panel.question.add.php 22 2 0

File Controller Question.php 65 7 0

 154 16 3,65

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&

ISSN: 2338-3070 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) 1099

 Vol. 9, No. 4, December 2023, pp. 1093-1103

Development of SLOC, CC, SQL Complexity Methods to Measure the Level of Similarity Complexity of Software

Modules (Made Agus Putra Subali)

Fig. 5. Data Visualization

3.2. Module Similarity Level Calculation

In Table 6 are the results of calculating the level of similarity of the eight modules based on the SLOC,

CC, and SQL Complexity values using the cosine similarity method [27]–[29], the results of these calculations

show that the eight modules have a high level of similarity, this can be seen in the average value The level of

similarity obtained is greater than 0.9 or close to 1. The high level of similarity of the modules obtained is

because the three features used, namely the SLOC, CC, and SQL Complexity values in each module, have a

fairly high level of similarity, besides that the calculation results from the three methods have the same position.

Table 6. Module Similarity Level Based on SLOC, CC, SQL Complexity Values
Modul 1 2 3 4 5 6 7 8

1 1 0.999897 0.999993 0.999254 0.999952 0.999998 0.999927 0.999990

2 0.999897 1 0.999875 0.998774 0.999963 0.999865 0.999935 0.999827

3 0.999993 0.999875 1 0.999377 0.999958 0.999994 0.999946 0.999993

4 0.999254 0.998774 0.999377 1 0.999160 0.999312 0.999242 0.999398

5 0.999952 0.999963 0.999958 0.999160 1 0.999935 0.999993 0.999919

6 0.999998 0.999865 0.999994 0.999312 0.999935 1 0.999911 0.999997

7 0.999927 0.999935 0.999946 0.999242 0.999993 0.999911 1 0.999900

8 0.999990 0.999827 0.999993 0.999398 0.999919 0.999997 0.999900 1

3.3. Evaluation of Results

1) SLOC Calculation Results

Table 7 shows the evaluation results of calculating the SLOC data from the eight modules. Based on

these results, all modules have the same cluster, namely extra extra small, considering that the

resulting SLOC size has a range of 0-530 [35], [40], it should be noted that the SLOC data used in

each module does not include HTML and CSS syntax, especially in the view file.

Table 7. Evaluation of SLOC Results
No. Module SLOC Rating

1 Menjawab Kuis 170 XXS
2 Update Biodata 120 XXS

3 Posting Soal 158 XXS

4 Menilai Kuis 180 XXS
5 Input Kelas 121 XXS

6 Input Siswa 134 XXS

7 Input Guru 161 XXS
8 Input Mapel 154 XXS

2) CC Calculation Results

Table 8 shows the evaluation results of the CC method for the eight modules. Based on these results,

each module has the same rating, namely a normal rating with a value range of 11-20 [11].

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&

1100 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) ISSN: 2338-3070

 Vol. 9, No. 4, December 2023, pp. 1093-1103

Development of SLOC, CC, SQL Complexity Methods to Measure the Level of Similarity Complexity of Software

Modules (Made Agus Putra Subali)

Table 8. Evaluation of CC Results
No. Module CC Rating

1 Menjawab Kuis 18 Normal

2 Update Biodata 14 Normal

3 Posting Soal 17 Normal
4 Menilai Kuis 19 Normal

5 Input Kelas 14 Normal

6 Input Siswa 14 Normal
7 Input Guru 19 Normal

8 Input Mapel 16 Normal

3) SQL Complexity Calculation Results

Table 9 shows the evaluation results of the SQL Complexity method for the eight modules. Based on

these results, the majority of each module has a very low rating with a range of 0-4, only modules

assessing quizzes obtain a normal rating with a value range of 11-20 [11].

Table 9. Evaluation of SQL Complexity Results
No. Module SQL Complexity Rating

1 Menjawab Kuis 3.35 Very Low

2 Update Biodata 1.2 Very Low

3 Posting Soal 3.65 Very Low
4 Menilai Kuis 10.55 Normal

5 Input Kelas 2.25 Very Low

6 Input Siswa 2.85 Very Low
7 Input Guru 3.45 Very Low

8 Input Mapel 3.65 Very Low

4) Expert Rating

Table 10 shows the results of the expert’s assessment of the eight modules used. Based on this

assessment, the expert gave a very low rating for modules answering quizzes, updating biodata, class

input, student input, teacher input, and subject input. As for the question posting module, it gets a

low rating and the module assessing quizzes gets a high rating.

Table 10. Expert Rating
No. Module Expert

1 Menjawab Kuis Very Low

2 Update Biodata Very Low

3 Posting Soal Low
4 Menilai Kuis High

5 Input Kelas Very Low

6 Input Siswa Very Low
7 Input Guru Very Low

8 Input Mapel Very Low

5) Accuracy

Based on the calculation results of SLOC, CC, SQL Complexity and the calculation of the level of

similarity for each module using the cosine similarity method, the eight modules used have a high

level of similarity, this can be seen in each rating obtained in Table 5.

The level of accuracy of the comparison of the SQL Complexity method used with expert judgment

is shown in Table 11.

Table 11. Evaluation of the Accuracy Level of the SQL Complexity Method and Expert Assessment
No. Module SQL Complexity Expert Suitability

1 Menjawab Kuis Very Low Very Low Suitable

2 Update Biodata Very Low Very Low Suitable

3 Posting Soal Very Low Low Not suitable
4 Menilai Kuis Normal High Not suitable

5 Input Kelas Very Low Very Low Suitable

6 Input Siswa Very Low Very Low Suitable
7 Input Guru Very Low Very Low Suitable

8 Input Mapel Very Low Very Low Suitable

Based on the results of the accuracy levels being compared, an accuracy of 75% is obtained, if the

expert pays attention to giving very low scores for modules number 1, 2, 5, 6, 7, and 8 due to the

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&

ISSN: 2338-3070 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) 1101

 Vol. 9, No. 4, December 2023, pp. 1093-1103

Development of SLOC, CC, SQL Complexity Methods to Measure the Level of Similarity Complexity of Software

Modules (Made Agus Putra Subali)

minimal variation of commands or statements in the module (there is one command either insert,

update, delete, or show data), while low is given to modules with a larger number of form fields, high

is given because there are various variations of commands and there is a calculation process in the

form of using program expressions.

4. CONCLUSION

Based on the results obtained from the eight software modules used, three data features have been

produced from the results of SLOC, CC, and SQL Complexity calculations. The results of measuring the level

of similarity of the three features in each module using the cosine similarity method obtained a high level of

similarity with an average value of 0.9. These results show that the proposed method can be used to measure

the level of complexity similarity of a software module. The high level of similarity of the modules obtained

is it ise the three features used have a fairly high level of similarity.

Acknowledgments
Researchers would like to thank Kementerian Pendidikan, Kebudayaan, Riset, dan Teknologi

(KEMDIKBUDRISTEK) who has provided support for this research.

REFERENCES
[1] N. Medeiros, N. Ivaki, P. Costa, and M. Vieira, “Vulnerable Code Detection Using Software Metrics and Machine

Learning,” IEEE Access, vol. 8, pp. 219174–219198, 2020, https://doi.org/10.1109/ACCESS.2020.3041181.

[2] H. Madhav C. and V. Kumar K.S., “A method for predicting software reliability using object oriented design metrics,”

International Conference on Intelligent Computing and Control Systems (ICCS), pp. 679-682, 2019,

https://doi.org/10.1109/ICCS45141.2019.9065541.

[3] M. Y. Mhawish and M. Gupta, “Predicting Code Smells and Analysis of Predictions: Using Machine Learning

Techniques and Software Metrics,” Journal of Computer Science and Technology, vol. 35, pp. 1428–1445, 2020,

https://doi.org/10.1007/s11390-020-0323-7.

[4] R. Kumar, A. Chaturvedi, and L. Kailasam, “An Unsupervised Software Fault Prediction Approach Using Threshold

Derivation,” IEEE Transactions on Reliability, vol. 71, no. 2, pp. 911–932, 2022,

https://doi.org/10.1109/TR.2022.3151125.

[5] L. Šikić, P. Afrić, A. S. Kurdija, and M. Šilić, “Improving Software Defect Prediction by Aggregated Change

Metrics,” IEEE Access, vol. 9, pp. 19391–19411, 2021, https://doi.org/10.1109/ACCESS.2021.3054948.

[6] X. Y. Jing, S. Ying, Z. W. Zhang, S. S. Wu, and J. Liu, “Dictionary learning based software defect prediction,” in

Proceedings of the 36th International Conference on Software Engineering (ICSE), pp. 414–423, 2014,

https://doi.org/10.1145/2568225.2568320.

[7] L. Luo, J. Ming, D. Wu, P. Liu, and S. Zhu, “Semantics-Based Obfuscation-Resilient Binary Code Similarity

Comparison with Applications to Software and Algorithm Plagiarism Detection,” IEEE Transactions on Software

Engineering, vol. 43, no. 12, pp. 1157–1177, 2017, https://doi.org/10.1109/TSE.2017.2655046.

[8] K.-J. Chen and C.-Y. Huang, “Using Modified Diffusion Models for Reliability Estimation of Open Source

Software,” IEEE Access, vol. 11, pp. 51631–51646, 2023, https://doi.org/10.1109/ACCESS.2023.3279109.

[9] K. Z. Sultana, V. Anu, and T. Y. Chong, “Using software metrics for predicting vulnerable classes and methods in

Java projects: A machine learning approach,” Journal of Software: Evolution and Process, vol. 33, no. 3, pp. 1–20,

2021, https://doi.org/10.1002/smr.2303.

[10] S. Misra, A. Adewumi, L. Fernandez-Sanz, and R. Damasevicius, “A Suite of Object Oriented Cognitive Complexity

Metrics,” IEEE Access, vol. 6, pp. 8782–8796, 2018, https://doi.org/10.1109/ACCESS.2018.2791344.

[11] M. A. P. Subali and S. Rochimah, “A new model for measuring the complexity of SQL commands,” in International

Conference on Information Technology and Electrical Engineering (ICITEE), pp. 1–5, 2018,

https://doi.org/10.1109/ICITEED.2018.8534782.

[12] Dinuka Rukshani Wijendra and K. P. Hewagamage, “Automated tool for the calculation of cognitive complexity of

a software,” 2nd International Conference on Science in Information Technology (ICSITech), pp. 163-168, 2016,

https://doi.org/10.1109/ICSITech.2016.7852627.

[13] N. A. Al-Saiyd, “Source code comprehension analysis in software maintenance,” in 2nd International Conference on

Computer and Communication Systems (ICCCS), pp. 1–5, 2017, https://doi.org/10.1109/CCOMS.2017.8075175.

[14] S. A. Chowdhury, G. Uddin, and R. Holmes, “An Empirical Study on Maintainable Method Size in Java,” in 2022

IEEE/ACM 19th International Conference on Mining Software Repositories (MSR), pp. 252–264, 2022,

https://doi.org/10.1145/3524842.3527975.

[15] M. Benaroch and K. Lyytinen, “How Much Does Software Complexity Matter for Maintenance Productivity? The

Link Between Team Instability and Diversity,” in IEEE Transactions on Software Engineering, vol. 49, no. 4, pp.

2459-2475, 2023, https://doi.org/10.1109/TSE.2022.3222119.

[16] M. M. Suleman Sarwar, S. Shahzad and I. Ahmad, “Cyclomatic complexity: The nesting problem,” Eighth

International Conference on Digital Information Management (ICDIM), pp. 274-279, 2013,

https://doi.org/10.1109/ICDIM.2013.6693981.

[17] D. Ståhl, A. Martini and T. Mårtensson, “Big Bangs and Small Pops: On Critical Cyclomatic Complexity and

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&
https://doi.org/10.1109/ACCESS.2020.3041181
https://doi.org/10.1109/ICCS45141.2019.9065541
https://doi.org/10.1007/s11390-020-0323-7
https://doi.org/10.1109/TR.2022.3151125
https://doi.org/10.1109/ACCESS.2021.3054948
https://doi.org/10.1145/2568225.2568320
https://doi.org/10.1109/TSE.2017.2655046
https://doi.org/10.1109/ACCESS.2023.3279109
https://doi.org/10.1002/smr.2303
https://doi.org/10.1109/ACCESS.2018.2791344
https://doi.org/10.1109/ICITEED.2018.8534782
https://doi.org/10.1109/ICSITech.2016.7852627
https://doi.org/10.1109/CCOMS.2017.8075175
https://doi.org/10.1145/3524842.3527975
https://doi.org/10.1109/TSE.2022.3222119
https://doi.org/10.1109/ICDIM.2013.6693981

1102 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) ISSN: 2338-3070

 Vol. 9, No. 4, December 2023, pp. 1093-1103

Development of SLOC, CC, SQL Complexity Methods to Measure the Level of Similarity Complexity of Software

Modules (Made Agus Putra Subali)

Developer Integration Behavior,” IEEE/ACM 41st International Conference on Software Engineering: Software

Engineering in Practice (ICSE-SEIP), pp. 81-90, 2019, https://doi.org/10.1109/ICSE-SEIP.2019.00017.

[18] T. Hariprasad, G. Vidhyagaran, K. Seenu, and C. Thirumalai, “Software complexity analysis using halstead metrics,”

in International Conference on Trends in Electronics and Informatics (ICEI), pp. 1109–1113, 2017,

https://doi.org/10.1109/ICOEI.2017.8300883.

[19] C. Thirumalai, R. R. Shridharshan, and L. R. Reynold, “An assessment of halstead and COCOMO model for effort

estimation,” in Innovations in Power and Advanced Computing Technologies (i-PACT), pp. 1–4, 2017,

https://doi.org/10.1109/IPACT.2017.8245069.

[20] I. Binanto, H. L. H. S. Warnars, B. S. Abbas, and N. F. Sianipar, “Halstead Metric for Quality Measurement of

Various Version of Statcato,” in 5th International Conference on Information Technology, Computer, and Electrical

Engineering (ICITACEE), pp. 276–280, 2018, https://doi.org/10.1109/ICITACEE.2018.8576972.

[21] F. Pecorelli, F. Palomba, D. Di Nucci and A. De Lucia, “Comparing Heuristic and Machine Learning Approaches

for Metric-Based Code Smell Detection,” IEEE/ACM 27th International Conference on Program Comprehension

(ICPC), pp. 93-104, 2019, https://doi.org/10.1109/ICPC.2019.00023.

[22] A. Ouared, Y. Ouhammou, and L. Bellatreche, “QoSMOS: QoS metrics management tool suite,” Computer

Languages, Systems & Structures, vol. 54, pp. 236-251, 2018, https://doi.org/10.1016/j.cl.2018.05.002.

[23] K. Langsari and R. Sarno, “Optimizing effort and time parameters of COCOMO II estimation using fuzzy multi-

objective PSO,” in International Conference on Electrical Engineering, Computer Science and Informatics (EECSI),

pp. 1–6, 2017, https://doi.org/10.1109/EECSI.2017.8239157.

[24] A. Odeh, M. Odeh, N. Odeh, and H. Odeh, “Machine Learning Model for Measuring Cyclomatic Complexity of

Source Code,” in International Conference on Intelligent Computing, Communication, Networking and Services

(ICCNS), pp. 149–153, 2023, https://doi.org/10.1109/ICCNS58795.2023.10193630.

[25] S. Aswini and M. Yazhini, “An assessment framework of routing complexities using LOC metrics,” in Innovations

in Power and Advanced Computing Technologies (i-PACT), pp. 1–6., 2017,

https://doi.org/10.1109/IPACT.2017.8245022.

[26] M. Salehpour and J. G. Davis, “SymphonyDB: A Polyglot Model for Knowledge Graph Query Processing,” 2021

Third International Conference on Transdisciplinary AI (TransAI), pp. 25-32, 2021,

https://doi.org/10.1109/TransAI51903.2021.00013.

[27] S. A. Crossley, K. Kyle, and M. Dascalu, “The Tool for the Automatic Analysis of Cohesion 2.0: Integrating semantic

similarity and text overlap,” Behavior research methods, vol. 51, pp. 14-27, 2019, https://doi.org/10.3758/s13428-

018-1142-4.

[28] B. S. J. Kapoor, S. M. Nagpure, S. S. Kolhatkar, P. G. Chanore, M. M. Vishwakarma and R. B. Kokate, “An Analysis

of Automated Answer Evaluation Systems based on Machine Learning,” International Conference on Inventive

Computation Technologies (ICICT), pp. 439-443, 2020, https://doi.org/10.1109/ICICT48043.2020.9112429.

[29] K. Merchant and Y. Pande, “NLP Based Latent Semantic Analysis for Legal Text Summarization,” International

Conference on Advances in Computing, Communications and Informatics (ICACCI), Bangalore, India, 2018, pp.

1803-1807, 2018, https://doi.org/10.1109/ICACCI.2018.8554831.

[30] D. Guamán, S. Delgado, and J. Pérez, “Classifying Model-View-Controller Software Applications Using Self-

Organizing Maps,” IEEE Access, vol. 9, pp. 45201–45229, 2021,

https://doi.org/10.1109/ICIMCIS53775.2021.9699233.

[31] R. O. Stroud, A. Ertas, and S. Mengel, “Application of Cyclomatic Complexity in Enterprise Architecture

Frameworks,” IEEE Systems Journal, vol. 13, no. 3, pp. 2166–2176, 2019,

https://doi.org/10.1109/JSYST.2019.2897592.

[32] D. D. Hutajulu, M. E. S. Simaremare, Y. S. Pangaribuan, and A. R. Ginting, “Measuring Programmer Quality from

Complexity Point of View,” in International Conference on Informatics, Multimedia, Cyber and Information System

(ICIMCIS, pp. 262–266, 2021, https://doi.org/10.1109/ICIMCIS53775.2021.9699233.

[33] A. N. R. L. Sirisha and A. K. Pradhan, “Cosine Similarity Based Directional Comparison Scheme for Subcycle

Transmission Line Protection,” IEEE Transactions on Power Delivery, vol. 35, no. 5, pp. 2159–2167, 2020,

https://doi.org/10.1109/TPWRD.2019.2962275.

[34] X. Lin, B. Zhou, and Y. Xia, “Online Recursive Power Management Strategy Based on the Reinforcement Learning

Algorithm With Cosine Similarity and a Forgetting Factor,” IEEE Transactions on Industrial Electronics, vol. 68,

no. 6, pp. 5013–5023, 2021, https://doi.org/10.1109/TIE.2020.2988189.

[35] W. D. Sunindyo and C. Rudiyanto, “Improvement of COCOMO II Model to Increase the Accuracy of Effort

Estimation,” International Conference on Electrical Engineering and Informatics (ICEEI), pp. 140-145, 2019,

https://doi.org/10.1109/ICEEI47359.2019.8988909.

[36] M. Gerrard, M. Borges, M. B. Dwyer, and A. Filieri, “Conditional Quantitative Program Analysis,” IEEE

Transactions on Software Engineering, vol. 48, no. 4, pp. 1212–1227, 2022,

https://doi.org/10.1109/TSE.2020.3016778.

[37] D.-P. Pop and A. Altar, “Designing an MVC Model for Rapid Web Application Development,” Procedia

Engineering, vol. 69, pp. 1172–1179, 2014, https://doi.org/10.1016/j.proeng.2014.03.106.

[38] D S. I. Adam and S. Andolo, “A New PHP Web Application Development Framework Based on MVC Architectural

Pattern and Ajax Technology,” 1st International Conference on Cybernetics and Intelligent System (ICORIS), pp. 45-

50, 2019, https://doi.org/10.1109/ICORIS.2019.8874912.

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&
https://doi.org/10.1109/ICSE-SEIP.2019.00017
https://doi.org/10.1109/ICOEI.2017.8300883
https://doi.org/10.1109/IPACT.2017.8245069
https://doi.org/10.1109/ICITACEE.2018.8576972
https://doi.org/10.1109/ICPC.2019.00023
https://doi.org/10.1016/j.cl.2018.05.002
https://doi.org/10.1109/EECSI.2017.8239157
https://doi.org/10.1109/ICCNS58795.2023.10193630
https://doi.org/10.1109/IPACT.2017.8245022
https://doi.org/10.1109/TransAI51903.2021.00013
https://doi.org/10.3758/s13428-018-1142-4
https://doi.org/10.3758/s13428-018-1142-4
https://doi.org/10.1109/ICICT48043.2020.9112429
https://doi.org/10.1109/ICACCI.2018.8554831
https://doi.org/10.1109/ICIMCIS53775.2021.9699233
https://doi.org/10.1109/JSYST.2019.2897592
https://doi.org/10.1109/ICIMCIS53775.2021.9699233
https://doi.org/10.1109/TPWRD.2019.2962275
https://doi.org/10.1109/TIE.2020.2988189
https://doi.org/10.1109/ICEEI47359.2019.8988909
https://doi.org/10.1109/TSE.2020.3016778
https://doi.org/10.1016/j.proeng.2014.03.106
https://doi.org/10.1109/ICORIS.2019.8874912

ISSN: 2338-3070 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) 1103

 Vol. 9, No. 4, December 2023, pp. 1093-1103

Development of SLOC, CC, SQL Complexity Methods to Measure the Level of Similarity Complexity of Software

Modules (Made Agus Putra Subali)

[39] F. A. Akbar, F. Muttaqin, and E. P. Mandyartha, “An Approach for Refactoring in Model Layer on MVC Based Web

Application,” in 6th Information Technology International Seminar (IT IS), pp. 178–182, 2020,

https://doi.org/10.1109/ITIS50118.2020.9320998.

[40] W. D. Sunindyo and C. Rudiyanto, “Improvement of COCOMO II Model to Increase the Accuracy of Effort

Estimation,” in International Conference on Electrical Engineering and Informatics (ICEEI), pp. 140–145, 2019,

https://doi.org/10.1109/ICEEI47359.2019.8988909.

BIOGRAPHY OF AUTHORS

Made Agus Putra Subali, Obtained Master of Computer degree from Institut Teknologi

Sepuluh Nopember, has worked as a lecturer since 2019 and currently focuses on research

topics related to software metrics and text mining. Email: madeagusputrasubali@gmail.com.

.

I Gusti Rai Agung Sugiartha, Obtained a Masters in Engineering from Udayana University,

has worked as a lecturer since 2016 and currently focuses on research topics related to

computer vision and image processing. Email: sugiarta@stikom-bali.ac.id.

I Putu Aditya Putra, Student from Institut Teknologi dan Bisnis STIKOM Bali class of

2022 in the Information Systems study program, have an interest in software engineering

topics. Email: adityaputra0605@gmail.com.

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&
https://doi.org/10.1109/ITIS50118.2020.9320998
https://doi.org/10.1109/ICEEI47359.2019.8988909
mailto:madeagusputrasubali@gmail.com
mailto:sugiarta@stikom-bali.ac.id
mailto:adityaputra0605@gmail.com

