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 The Percentage Depth Dose (PDD) and dose profile of X-Ray output from a 

LINAC therapy device has been modeled and analyzed. The research was 

conducted by simulation method through the use of the Particle and Heavy 

Ion Transport System (PHITS) program. The LINAC therapy device modeled 

in this work refers to the Siemens Primus LINAC therapy device, which is 

operated at 6 MV, 10 MV, and 18 MV voltages. Determination of PDD was 

carried at a depth of 0-30 cm and dose profile at a depth of 0-20 cm in a water 

phantom, placed at 100 cm from the source, which is exposed to a radiation 

field area of 10×10 cm2. Results from the LINAC therapy device modeling 

agree with the actual X-ray apparatus and have produced Bremsstrahlung X-

ray. The PDD curve analysis found that the maximum doses are at a depth of 

1.5 cm, 2.5 cm, and 3.4 cm. The value of the build-up factor for each LINAC 

voltage agrees with the reference. Additionally, the results of the analysis of 

the dose profile suggest that the X-ray output has a good degree of uniformity. 

The flatness of the dose profile occurs at the depth of 20 cm with a percentage 

value of flatness at 1.6%, 1.9%, and 1.2%. The flatness values are all less than 

2%. The flatness values show a ≤ 2% deviation from the reference value, 

which is below the tolerance range required in a measurement. 
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1. INTRODUCTION  

Medical Linear Accelerator (LINAC) is an alternative therapy for cancer or tumors other than Cobalt 60 

radiotherapy [1]. The main goal of LINAC radiotherapy is to provide a maximum dose to the tumor and a low 

dose to healthy cells near the tumor to improve quality of life and prolong patient survival [2]. In order to 

achieve this goal, the dose distribution produced by LINAC needs to be verified with an accurate method [3]. 

Two quantities that need to be verified before using the LINAC therapy device are the Percentage Depth Dose 

(PDD) and the dose profile [4][5]. 

Verification using a simulation approach is essential before LINAC therapy equipment is set up or 

prepared for the treatment of the patient [6]. One of the simulation methods to achieve this goal is the Monte 

Carlo method. The Monte Carlo method has been of great help in planning therapy using various radiation 

sources [7]. The method can also calculate in detail the spectral energy distribution of particles generated from 

the LINAC therapy apparatus as well as dosimetric calculations in the form of Percentage Depth Dose (PDD) 

and dose profiles [8]. 

Various Monte Carlo-based programs (codes) have been developed, such as MCNP, Geant4, and 

Penelope. MCNP is a Monte Carlo code developed by the Los Alamos National Laboratory. Geant4 was 

developed by CERN and KEK laboratories in 1993, and Francesc Salvat and colleagues developed Penelope 

at the University of Barcelona. In practice, the results vary due to differences in computational systems and in 
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nuclear data libraries included with the respective MC packages [9]. The weakness of the MCNP program is 

that it cannot visually display particle traces directly. On the other hand, Geant4 and Penelope are used only in 

the limited range of energy between 50 eV to 1 GeV [10]. 

The latest development is a code developed in Japan under Particle Heavy Ion Transport System (PHITS). 

The PHITS is a Monte Carlo method developed by the Japan Atomic Energy Agency (JAEA) to simulate 

nuclear processes in various research fields such as dosimetry, accelerator, shield design, space research, 

medical applications, and material research [11]. The advantage of the PHITS as a Monte Carlo-based program 

is that it is equipped with a tally that can visualize particle traces in 2 and 3 dimensions and calculate the 

physical quantity to be determined.  The PHITS program is also suitable for simulating the transport of charged 

and uncharged particles that move randomly within the range of energy from 10-4 eV to  1 TeV [12].  

The use of the PHITS program in this study contributes to a visual explanation of the mechanism of X-

ray generation from the LINAC device and a more accurate determination of the PDD curve and dose profile. 

The accuracy in determining these parameters is a prerequisite before the LINAC device is used as a therapy 

instrument.   

 

2. METHOD  

The method used in this research is simulation. The research was conducted through several stages. The 

initial stage is literature and theoretical studies on the LINAC device, particularly the components that make 

up the LINAC head and important predetermined parameters before therapeutic operation. The following stage 

models the LINAC device by compiling the PHITS program input. The last stage is simulation to test the 

validity of the model and the determination of PDD parameters and dose profiles. The stages of the research 

are shown in Fig. 1. 

 

 
Fig. 1. Flowchart of modeling and analysis of PDD and dose profile in the research 

 

2.1. Modeling of LINAC Therapy Device 

The modeling of the LINAC therapy device is focused on the LINAC head. This section is chosen because 

it is the place where X-ray is generated. The material composition used in modeling the LINAC head geometry 

is based on the Siemens Primus LINAC device. Only the main components of the LINAC head are modeled, 

namely the target, primary collimator, flattening filter, and secondary collimator [13]. The radiation field area 

used in this study is 10×10 𝑐𝑚2 and the distance from Source to Skin Distance (SSD) is 100 cm [14]. The 

components that make up the LINAC head is shown in Table 1.  

 

Table 1. Composition of the material components of the LINAC head [15] 

LINAC Head Components Materials Percentage (%) Density (g/cm3) 

Target Tungsten (184W) 100 19.4 

Primary Collimator 

Tungsten (184W) 90.5 

17 Nickel (58Ni) 6.5 

Iron (56Fe) 3 

Flattening Filter 
Copper (63Cu) 69.17 

8.92 
Copper (65Cu) 30.83 

Secondary Collimator 

Tungsten (184W) 90.5 

17 Nickel (58Ni) 6.5 

Iron (56Fe) 3 

 

The success of the X-ray head modeling is judged by the evidence of visualizing the traces of X-ray 

particles from escaping the target, passing through the components of the LINAC head, and penetrating the 

water phantom. Other evidence is the presence of an X-ray energy spectrum [16]. The geometry model of the 

LINAC head is shown in Fig. 2(a). The model of the LINAC head and visualization is shown in Fig. 2(b). 

 

Literature 
Study 

LINAC Device 
Modeling 

Simulation: Validation of 
Model and Analysis of PDD 

and Dose Profile 
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(a)                        (b) 

Fig. 2. (a) Geometry of Linac head and water phantom. The x-ray photon beam emitted from the LINAC 

head is applied to the water phantom. PDD measurement in the direction of the Z-axis and the dose profile 

perpendicular to the direction of the beam (in the direction of the X-axis), (b) Model of the LINAC head 

and visualization of the components that make up the LINAC head based on the Simen Primus device 

 

2.2. Determination of PDD Curve and Dose Profile 

The standard water phantom determined the PPD curve and the dose profile of the X-ray radiation beam 

[17]. The water phantom is constructed as a cube of 40×40×40 cm3 in size. In the phantom, a lattice of voxels 

(volumetric pixels) are made along the 𝑧 and 𝑥 axis. The voxels are designed as small cubes 1×1×1 cm3 in 

size. The designed model of the water phantom interposed with voxels is shown in Fig. 3. 

 

 
Fig. 3. Geometrical model of water phantom interposed with voxels for measurement of Percentage Depth 

Dose (PDD) and dose profile 

 

The simulation to determine the PDD curve in the water phantom is carried out at a depth of 0 to 30 cm 

in the direction of the main axis (𝑧-axis), while the dose profile is determined at a depth that ranges from 0 to 

20 cm. The PDD values are calculated at every depth using Eq. (1) [18]. 

 𝑃𝐷𝐷 = 100
𝐷𝑑

𝐷𝑑0

 (1) 

with 𝐷𝑑  is absorption dose at the depth 𝑑 and  𝐷𝑑0 is the maximum absorption dose. 

Analysis on PDD and dose profile is carried out by finding the difference between the simulation results 

and the reference value. The stipulated difference is ≤ 2%. The flatness value is determined using Eq. (2) [19].  
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 𝐹𝑙𝑎𝑡𝑛𝑒𝑠𝑠 = 100 
𝐷𝑚𝑎𝑥 − 𝐷𝑚𝑖𝑛

𝐷𝑚𝑖𝑛 + 𝐷𝑚𝑎𝑥

 (2) 

with 𝐷𝑚𝑎𝑥 is maximum dose and 𝐷𝑚𝑖𝑛 is minimum dose. 

The modeling of LINAC head and determination of PDD and dose profile use the PHITS program version 

3.24. Visualization of trace particles and X-ray energy spectra uses the tally tracks. The determination of PDD 

values and dose profile, on the other hand, uses the tally deposit. The data library for the simulation uses cross 

sections from the JENDL-4.0 nuclear data library [12]. 

 

3. RESULTS AND DISCUSSION  

3.1 Modeling The Geometry of LINAC Head 

The results of the LINAC head geometry modeling using the PHITS program are shown in Fig. 4. The 

resulting model needs to be validated to ensure that the model truly represents the actual X-ray equipment. The 

criteria to ensure the head geometry model represents the actual equipment include the model being able to 

display the components of the LINAC head, the occurrence of X-rays from the target and their distribution, 

and the X-ray energy spectrum [16][20]. 

The high-energy electron beam interaction with the tungsten target produces X-ray radiation with a high-

intensity value because tungsten is a target with a high atomic number. Targets with high atoms produce more 

X-ray radiation than targets with low atomic numbers [21][22]. 

 

 
(a) (b) (c) 

Fig. 4.  Traces of X-ray particles produced by LINAC at working voltage of (a) 6 MV (b) 10 MV, and (c) 18 

MV. The traces of X-ray particles resulting from the interaction of electrons with the target are depicted in 

color. Red represents high intensity, and blue represents low intensity, (d) The conversion of intensity in the 

flux value of X-ray photon 

 

Fig. 3 also shows that the higher the LINAC voltage, the greater the X-ray intensity (shown by, the sharper 

red color). X-ray Photons generated from the target are passed through the primary collimator, flattening filter, 

secondary collimator, and water phantom. The X-ray intensity in the area around the target is 1016 (p/cm2.s) 

and decreases in intensity when interacting with the primary collimator, flattening filter, and secondary 

collimator. The X-ray coming out of the secondary collimator decreases in intensity to 1015 (p/cm2.s) and hit 

the water phantom with an intensity of 1014 (p/cm2s).  

The results of the X-ray spectrum from the modeling of the LINAC head are shown in Fig. 5. It can be 

seen that the X-ray intensity at the three different voltages of the LINAC forms a continuous spectrum. The 

continuous curve is called the bremsstrahlung curve [23]. The bremsstrahlung curve has maximum peak energy 

of 0.5 to 1.3 MeV. The maximum energy is generated through the pair production effect and X-rays interacting, 
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thus creating two annihilating photons, each having an energy of 0.51 MeV [24]. The results are in accordance 

with those obtained by Baumgartner et al. at the voltage of 10 and 18 MV [25]. 

 

 
Fig. 5. X-Ray's energy spectrum at various LINAC working voltages. The X-axis represents energy, and the 

Y-axis represents the number of photon fluxes (X-ray intensity) 

 

3.2  Percentage Depth Dose (PDD) and Dose Profile 

3.2.1  Percentage Depth Dose (PDD) 

PDD is an important parameter in studying the radiation dose distribution of X-ray photons along the 

main axis (z-axis) of LINAC. The calculation of PDD is carried out on the surface of the water phantom to a 

depth of 30 cm. The results of the PDD calculation are shown in Fig. 6, showing that the PDD curve of the 

three LINAC voltage variations appears to have a uniform graph trend. The PPD curve has a low surface dose 

pattern, then rises to a maximum value and decreases exponentially. The calculation results of the build-up 

value at 6, 10, and 18 MV voltages are found at a depth of 1.5 cm, 2.5 cm, and 3.4 cm, respectively.  

 

 
Fig. 6. PDD curve of the three LINAC voltage variations 

 

The build-up value at voltages 6 and 10 MV corresponds to the reference, while 18 MV is smaller than 

the reference. The difference in the build-up value at 18 MV is 2%. This value is still within the allowable 

tolerance limit, which is  ≤  2% [26][27]. The maximum dose increases with the LINAC voltage, increasing 

the X-ray energy produced. X-ray photons can penetrate the water phantom deeper, so the build-up position is 

increasing [28][29]. 

 

3.2.2 Dose Profile 

Dose profile refers to the relative dose distribution along the horizontal axis (x-axis) that is perpendicular 

to the direction of the incident X-ray radiation beam. The profile curve of radiation dose for each variation of 

LINAC voltage using a radiation field of 10  10 cm and SSD 100 cm is shown in Fig. 6. Fig. 7 shows that the 

voltage increases the position to reach 100% of the dose gets deeper. The X-rays produced by the LINAC 

device at voltages of 6, 10, and 18 MV have similar dose profiles. The dose profile tends to decrease as it 

approaches the edge of the irradiation field. This decrease is due to the penumbra effect [27]. A penumbra 
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region appears because of  X-ray radiation exposure in the radiation field that is limited by the collimator jaws 

[30][31]. 

Simulation of dose profile at the voltage of 6, 10, and 18 MV provides different relative doses at 5, 10 

and 20 cm depth. At 6 MV, the relative dose at the depth of 5, 10 and 20 cm are respectively 41.5%, 62.2% 

and 80.1%. At 10 MV, they are 42.2%, 66.7% and 83.4%. At 18 MV, highest values of relative dose are 

obtained, i.e., 45%, 66.3% and 85.0%. It shows that as the voltage of LINAC increases, the ability of X-ray 

radiation to penetrate the water phantom correspondingly increases. The increase in penetrating power is due 

to an increase in the energy of the x-rays [32][33]. 

 

 
(a)                                                          (b) 

 
(c) 

Fig. 7. Dose profile curve produced by LINAC at working voltage of (a) 6 MV (b) 10 MV (c) 18 MV 

  

The degree of uniformity of the photon beam produced by the LINAC machine can be determined from 

the flatness value of the X-ray beam. The flatness value at the voltage of 6, 10, and 18 MV calculated at a depth 

of 10 cm is shown in Table 2. The flatness values of the X-ray photon beam are all less than 2%. They are 

below the permissible flatness value, which is < 2% [34][35]. However, the dose profile still shows a dose 

profile that is not symmetrical, as shown in Fig. 6. The area of the left side is not the same as that of the right 

side.  It suggests that the X-ray beams striking the water phantom have different intensities. The difference in 

intensity is caused by the presence of contaminants in the form of secondary electrons and neutrons that arise 

when the primary electrons interact with the target [36][37]. The two beams spread out following the X-ray 

photons. The use of an ion chamber and layered flattening filter is deemed responsible for reducing these 

contaminants so that the generated X-rays increase the uniformity of the beam [38]−[40]. 

 

Table 2. Flatness percentage of a radiation beam 

No Linac (MV) Percentage of deviation from flatness (%) 

1 6 1.6 

2 10 1.9 

3 18 1.2 
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4. CONCLUSION 

The modeling of the LINAC therapy machine based on the Siemen Primus LINAC device has been 

successfully carried out. The modeling of the LINAC therapy device agrees with the actual X-ray apparatus. 

The model of the X-ray therapy device has produced X-ray traces and their spectrum. The calculation of 

Percentage Depth Dose (PDD) with a radiation field of 10×10 cm2 at the working voltage of 6, 10, and 18 MV 

results in maximum doses at a depth of, respectively, 1.5 cm, 2.5 cm, and 3.5 cm. Based on the analysis of the 

PDD curve, the value of the build-up factor for each LINAC voltage agrees with the reference.  The radiation 

dose profile with a radiation field of 10×10 cm2 demonstrates that the flatness of the dose profile occurs at the 

depth of 20 cm with a percentage value of flatness at 1.6%, 1.9%, and 1.2%. The result satisfies the stipulated 

tolerance limit of  < 2 %. For future research, it is necessary to improve the model by adding an ion chamber 

and a layered flattening filter to the LINAC head component so that the X-ray beam produced is more uniform. 
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