PENGENALAN CITRA OBJEK SEDERHANA DENGAN JARINGAN SARAF TIRUAN METODE PERCEPTRON
Abstract
Konsep bangunan dan benda-benda yang ada di sekeliling didasarkan dan dipengaruhi oleh konsep objek sederhana atau sering disebut geometri ruang tiga dimensi, yaitu memiliki panjang, lebar dan tinggi. Namun, dalam rancangan dan penggambarannya menggunakan gambar berdimensi dua saja. Sehingga pada konsep penggambarannya membutuhkan visualisasi yang lebih detail. Diharapkan jaringan syaraf tiruan metode perceptron dapat mengenali gambar yang sesuai dengan bentuk aslinya.
Pada penelitian ini metode jaringan saraf yang digunakan adalah metode perceptron untuk mengenali citra objek sederhana. Objek yang digunakan yaitu bentuk bangun ruang yang terdiri dari kubus, kerucut, tabung, prisma, dan limas dengan berbagai jenisnya. Perangkat lunak yang digunakan pada pembuatan aplikasi ini adalah Borland Delphi 7.0.
Dari hasil pelatihan dan pengujian jaringan saraf tiruan perceptron dapat mengenali pola dengan rata-rata 75,25 % dengan prosentase terendah yaitu 50,75 % dan prosentase tertinggi yaitu 92,65 %. Dengan prosentase yang cukup baik tersebut, sistem dapat digunakan untuk mengenali citra objek sederhana.
Kata kunci : Objek sederhana, Jaringan syaraf tiruan, Percepton.
References
Bose, Neural Network Fundamentals With Graph, Algoritms and Application, McGraw Hill, New York, 1996.
. Dayhoff, J.,E.,1992 Neural Network Architectures, An Introduction, Van Nostrad Reinhol, New York.
. Fausett, L., 1994 Fundamentals of Neural Network, Architectures, Algorithm, and Appplications, Preintice-Hall, Inc, New York.
. Foster, George, .,1996 Financial Statement Analysis, Second Edition, Preintice Hall International Inc.
. Haryadi, 2003. Pengenalan Pola Alphabet Menggunakan Jaringan Syaraf Tiruan Perseptron. Skripsi Informatika-S1 UAD, Yogyakarta
. Kartalopoulos, stammatios, 1996, Understanding Neural Networks And Fuzzy Logic, IEEE PRESS, New York.
Kusumadewi, Sri. 2004. Membangun Jaringan Syaraf Tiruan menggunakan Matlab dan Excel Link. Graha Ilmu, Yogyakarta.
Schalkof, Robert J., 1992, Pattern Recognition: Statistical, Structural and Neural Approaches, John Wiley and Sons, Inc Canada.
Subiyanto, 2000. Aplikasi Jaringan Syaraf Tiruan sebagai Metode Alternatif Prakiraan Beban Jangka Pendek. Makalah Nomor 29, Tahun VI, Januari 2000. Elektro Indonesia.
Wibowo, Catur. 2004. Pengenalan Objek Pola 2 Dimensi (Planar) dengan Jaringan Syaraf Tiruan. Skripsi Informaika-S1 UAD, Yogyakarta.
www.doc.ic.ac.uk/~nd/surprise_96/ journal/vol4/cs11/report.html [12] http://library.gunadarma.ac.id/files/disk1/2
www.matematika.id.wikiaz.biz/geometri
Downloads
Published
Issue
Section
License
Authors who publish with Jurnal Informatika (JIFO) agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.